9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.

      Environmental Science & Technology
      Air Pollutants, analysis, Air Pollution, prevention & control, statistics & numerical data, Biofuels, Biomass, Carbon, Carbon Cycle, Conservation of Natural Resources, methods, Ethanol, Greenhouse Effect, Models, Chemical, Ontario, Trees, Wood

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16-38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies.

          Related collections

          Author and article information

          Comments

          Comment on this article