Blog
About

53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BMP7 released by bone marrow stromal cells induces reversible senescence of prostate cancer stem-like cells, and BMPR2 expression inversely correlates with bone metastasis and recurrence in prostate cancer patients.

          Abstract

          Metastatic disease is the major cause of cancer deaths, and recurrent tumors at distant organs are a critical issue. However, how metastatic tumor cells become dormant and how and why tumors recur in target organs are not well understood. In this study, we demonstrate that BMP7 (bone morphogenetic protein 7) secreted from bone stromal cells induces senescence in prostate cancer stem-like cells (CSCs) by activating p38 mitogen-activated protein kinase and increasing expression of the cell cycle inhibitor, p21, and the metastasis suppressor gene, NDRG1 (N-myc downstream-regulated gene 1). This effect of BMP7 depended on BMPR2 (BMP receptor 2), and BMPR2 expression inversely correlated with recurrence and bone metastasis in prostate cancer patients. Importantly, this BMP7-induced senescence in CSCs was reversible upon withdrawal of BMP7. Furthermore, treatment of mice with BMP7 significantly suppressed the growth of CSCs in bone, whereas the withdrawal of BMP7 restarted growth of these cells. These results suggest that the BMP7–BMPR2–p38–NDRG1 axis plays a critical role in dormancy and recurrence of prostate CSCs in bone and suggest a potential therapeutic utility of BMP7 for recurrent metastatic disease.

          Related collections

          Most cited references 79

          • Record: found
          • Abstract: found
          • Article: not found

          Smad-dependent and Smad-independent pathways in TGF-beta family signalling.

          Transforming growth factor-beta (TGF-beta) proteins regulate cell function, and have key roles in development and carcinogenesis. The intracellular effectors of TGF-beta signalling, the Smad proteins, are activated by receptors and translocate into the nucleus, where they regulate transcription. Although this pathway is inherently simple, combinatorial interactions in the heteromeric receptor and Smad complexes, receptor-interacting and Smad-interacting proteins, and cooperation with sequence-specific transcription factors allow substantial versatility and diversification of TGF-beta family responses. Other signalling pathways further regulate Smad activation and function. In addition, TGF-beta receptors activate Smad-independent pathways that not only regulate Smad signalling, but also allow Smad-independent TGF-beta responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.

            Transitions between epithelial and mesenchymal states have crucial roles in embryonic development. Emerging data suggest a role for these processes in regulating cellular plasticity in normal adult tissues and in tumours, where they can generate multiple, distinct cellular subpopulations contributing to intratumoural heterogeneity. Some of these subpopulations may exhibit more differentiated features, whereas others have characteristics of stem cells. Owing to the importance of these tumour-associated phenotypes in metastasis and cancer-related mortality, targeting the products of such cellular plasticity is an attractive but challenging approach that is likely to lead to improved clinical management of cancer patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGFbeta in Cancer.

              The transforming growth factor beta (TGFbeta) signaling pathway is a key player in metazoan biology, and its misregulation can result in tumor development. The regulatory cytokine TGFbeta exerts tumor-suppressive effects that cancer cells must elude for malignant evolution. Yet, paradoxically, TGFbeta also modulates processes such as cell invasion, immune regulation, and microenvironment modification that cancer cells may exploit to their advantage. Consequently, the output of a TGFbeta response is highly contextual throughout development, across different tissues, and also in cancer. The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                19 December 2011
                : 208
                : 13
                : 2641-2655
                Affiliations
                [1 ]Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
                [2 ]Iwate Medical University, Morioka, Iwate 020-8505, Japan
                Author notes
                CORRESPONDENCE Kounosuke Watabe: kwatabe@ 123456siumed.edu
                Article
                20110840
                10.1084/jem.20110840
                3244043
                22124112
                © 2011 Kobayashi et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                Product
                Categories
                Article

                Medicine

                Comments

                Comment on this article