43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Commentary: Why sprint interval training is inappropriate for a largely sedentary population

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this commentary, we explain why the recent manuscript by Hardcastle et al. (2014), which conveyed the opinion that sprint interval training (SIT) is inappropriate for sedentary individuals, may be misguided and propose an alternate view on this issue. Specifically, the main disagreements to consider involve reduced pleasure, self-esteem, adherence, and motivation with SIT, as well as the potential complexities involved with controlling exercise intensities. Minimal doses of exercise for health are somewhat limited within exercise recommendations (Garber et al., 2011) which tend to gravitate toward moderate intensity continuous exercise (MICE). However, it appears that 150 min/week of MICE is insufficient for weight loss/regain and to influence obesity-related risk factors (Church et al., 2009). Thus, interval-based training at varying intensities is advocated to address health and disease (Gibala et al., 2012). With ~31% of the world's population being sedentary (Hallal et al., 2012), those who aim to improve previously mentioned health goals, SIT, which is a specific type of high-intensity intermittent training (HIIT; Buchheit and Laursen, 2013), may be an advantageous exercise strategy (Del Vecchio et al., 2013). To advocate for decreased pleasure with increasing intensity, Hardcastle et al. (2014) employ a review article that at no point mentions HIIT or SIT but primarily focused on continuous exercise at ~85% of VO2 reserve (Ekkekakis et al., 2011). In a direct comparison of single MICE or HIIT sessions, Oliveira et al. (2013) observed greater ratings of perceived exertion during HIIT, but no difference in physical activity enjoyment between the two types of exercise. In addition to the lack of reference to SIT or HIIT in the currently discussed Opinion Article (Hardcastle et al., 2014), the authors employ an “invited paper” (Parfitt and Hughes, 2009) which focuses on self-selected exercise intensity and self-regulation to support the notion that “enjoyment is also a predictor of exercise adherence and most people do not enjoy high intensity exercise.” Contrary to the suggestions, in a controlled trial, HIIT was shown to be more enjoyable than MICE (Bartlett et al., 2011). Similar results were found in varying populations (Crisp et al., 2012; Jung et al., 2015; Martinez et al., 2015), however, long-term evaluation is still needed. It is our opinion that the motivation provided by positive health improvements and the time-efficiency of SIT/HIIT exceeds their potential aversive effects. Moreover, the assumption that these protocols have low adherence is not confirmed, with studies in elderly individuals showing a preference for interval protocols (Guiraud et al., 2011) and lengthy training studies (up to 9 months) reporting adherence greater than 90% with HIIT in obese participants and people with joint disorders (Gremeaux et al., 2012; Bressel et al., 2014). The only study cited by Hardcastle et al. (2014) to question adherence to intense protocols is by Perri et al. (2002) which involved the comparison of two continuous exercise sessions carried out between 40–55% and 65–75% of HRreserve. In fact, the results of this study highlight potential issues with current MICE recommendations, including decreased adherence and limitations with regard to training volume using selected intensities for steady-state exercise. Interestingly, results from a systematic review showed that 12mos of MICE resulted in less than 2 kg of weight loss (Avenell et al., 2004), while others have advocated the use of HIIT for improvements in body composition (Boutcher, 2011). Further, SIT has shown to improve motivation, particularly with regard to appearance and maintenance of body mass, as well as quality of life scores in elderly sedentary people (Knowles et al., 2015). Contradicting the assumptions made by Hardcastle et al. (2014), results from a randomized controlled trial showed that 6 weeks of SIT lead to improvement in the perception of health and mood of sedentary women (30–65 years) at risk for metabolic syndrome (Freese et al., 2014). The studies used to convince the reader that SIT is strenuous and can increase feelings of low self-esteem, potential failure, and incompetence tended to address generic issues and did not specifically involve SIT or HIIT (Hein and Hagger, 2007; Lindwall et al., 2011). Furthermore, self-discipline and self-regulation, presented as necessary factors to achieve success with SIT, are essential for any behavior change. Thus, engagement in exercise for health is a behavioral decision. Additionally, the sense of self-esteem, motivation, and competence is relative and can be enhanced by health professionals, as we believe that few people should perform exercise without supervision or guidance with regard to medical clearance, gradual progression, and appropriate monitoring. In this context, the exercise intensity is relative to the individual's current health and emotional status. Often sedentary or obese people and individual's with medical restrictions, have such low physical fitness that it would be impossible to conduct MICE. For example, a person with COPD, if a 30 min exercise is recommended, should exercise at 2.4–3.5 km/h (Rugbjerg et al., 2015), which may results in complications, including, but not limited to, joint pain, diaper rash, and general discomfort as reported by obese individuals during this type of training. Hardcastle et al. (2014) argue that intensity control during SIT is complex. However, proper control of MICE requires expensive and complex equipment to quantify intensities, such as heart rate monitors, global positioning systems, and/or devices to report external loads (speed, load, inclination, etc.). In contrast, the interval-training model proposed by Tabata et al. (1996) can be conducted using minimal equipment, with physiological adaptions equivalent to those obtained with MICE (McRae et al., 2012). Regarding the use of extended rest/recovery periods between exercise intervals, SIT models are flexible and Matsuo et al. (2014) reported superior results using a protocol lasting only 7 min compared to a 45 min MICE session, further highlighting the time efficient nature of this approach. Hardcastle et al. (2014) should be commended for potentially furthering the research agenda surrounding the beneficial effects of SIT. In closing, it is should be recognized that the development of training programs should not be limited to a single exercise methodology (Del Vecchio et al., 2013), and that, in addition to SIT and MICE, other modes, including progressive strength training and leisure/recreational activities, should also be utilized in the sedentary population. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis.

          High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise intensity prescription.

            The public health problem of physical inactivity has proven resistant to research efforts aimed at elucidating its causes and interventions designed to alter its course. Thus, in most industrialized countries, the majority of the population is physically inactive or inadequately active. Most theoretical models of exercise behaviour assume that the decision to engage in exercise is based on cognitive factors (e.g. weighing pros and cons, appraising personal capabilities, evaluating sources of support). Another, still-under-appreciated, possibility is that these decisions are influenced by affective variables, such as whether previous exercise experiences were associated with pleasure or displeasure. This review examines 33 articles published from 1999 to 2009 on the relationship between exercise intensity and affective responses. Unlike 31 studies that were published until 1998 and were examined in a 1999 review, these more recent studies have provided evidence of a relation between the intensity of exercise and affective responses. Pleasure is reduced mainly above the ventilatory or lactate threshold or the onset of blood lactate accumulation. There are pleasant changes at sub-threshold intensities for most individuals, large inter-individual variability close to the ventilatory or lactate threshold and homogeneously negative changes at supra-threshold intensities. When the intensity is self-selected, rather than imposed, it appears to foster greater tolerance to higher intensity levels. The evidence of a dose-response relation between exercise intensity and affect sets the stage for a reconsideration of the rationale behind current guidelines for exercise intensity prescription. Besides effectiveness and safety, it is becoming increasingly clear that the guidelines should take into account whether a certain level of exercise intensity would be likely to cause increases or decreases in pleasure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence.

              The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average VO(2) (71 ± 6 vs. 73 ± 4%VO(2max)), total VO(2) (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                07 September 2015
                2015
                : 6
                : 1359
                Affiliations
                [1] 1Department of Performance and Human Metabolism, Superior School of Physical Education, Federal University of Pelotas Pelotas, Brazil
                [2] 2Department of Physical Education, University of Brasilia Brasilia, Brazil
                [3] 3Department of Exercise Physiology, Institute of Exercise Physiology and Wellness, University of Central Florida Orlando, FL, USA
                Author notes

                Edited by: Gian Mauro Manzoni, eCampus University, Italy

                Reviewed by: Melanie M. Adams, Keene State College, USA; Danice Brown Greer, The University at Tyler, USA; Erica Aneke Hinckson, Auckland University of Technology, New Zealand

                *Correspondence: Victor S. Coswig, vcoswig@ 123456gmail.com

                This article was submitted to Psychology for Clinical Settings, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2015.01359
                4561356
                26441735
                11948b1f-a010-4bd4-9d1a-2a051e950b95
                Copyright © 2015 Del Vecchio, Gentil, Coswig and Fukuda.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 July 2015
                : 24 August 2015
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 28, Pages: 3, Words: 2291
                Categories
                Psychology
                General Commentary

                Clinical Psychology & Psychiatry
                exercise psychology,sprint interval training,exercise intensity,behavior change,feeling states,exercise adherence

                Comments

                Comment on this article