19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A remarkable recent experiment has observed Mott insulator and proximate superconductor phases in twisted bilayer graphene when electrons partly fill a nearly flat mini-band that arises at a `magic' twist angle. However, the nature of the Mott insulator, origin of superconductivity and an effective low energy model remain to be determined. We propose a Mott insulator with intervalley coherence that spontaneously breaks U(1) valley symmetry, and describe a mechanism that selects this order over the competing magnetically ordered states favored by the Hunds coupling. We also identify symmetry related features of the nearly flat band that are key to understanding the strong correlation physics and constrain any tight binding description. First, although the charge density is concentrated on the triangular lattice sites of the Moire pattern, the Wannier states of the tight-binding model must be centered on different sites which form a honeycomb lattice. Next, spatially localizing electrons derived from the nearly flat band necessarily breaks valley and other symmetries within any mean-field treatment, which is suggestive of a valley-ordered Mott state, and also dictates that additional symmetry breaking is present to remove symmetry-enforced band contacts. Tight binding models describing the nearly flat mini-band are derived, which highlight the importance of further neighbor hopping and interactions. We discuss consequences of this picture for superconducting states obtained on doping the valley ordered Mott insulator. We show how important features of the experimental phenomenology may be explained and suggest a number of further experiments for the future. We also describe a model for correlated states in trilayer graphene heterostructures and contrast it with the bilayer case.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moire bands in twisted double-layer graphene

          , (2011)
          A moire pattern is formed when two copies of a periodic pattern are overlaid with a relative twist. We address the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moire pattern periodicity leads to moire Bloch bands. The two layers become more strongly coupled and the Dirac velocity crosses zero several times as the twist angle is reduced. For a discrete set of magic angles the velocity vanishes, the lowest moire band flattens, and the Dirac-point density-of-states and the counterflow conductivity are strongly enhanced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            From Nagaoka's ferromagnetism to flat-band ferromagnetism and beyond: An introduction to ferromagnetism in the Hubbard model

            Hal Tasaki (1997)
            This is a self-contained review about ferromagnetism in the Hubbard model, which should be accessible to readers with various backgrounds who are new to the field. We describe Nagaoka's ferromagnetism and flat-band ferromagnetism in detail, giving all necessary backgrounds as well as complete (but elementary) mathematical proofs. By studying an intermediate model called long-range hopping model, we also demonstrate that there is indeed a deep relation between these two seemingly different approaches to ferromagnetism. We further discuss some attempts to go beyond these approaches. We briefly discuss recent rigorous example of ferromagnetism in the Hubbard model which has neither infinitely large parameters nor completely flat bands. We give preliminary discussions about possible experimental realizations of the (nearly-)flat-band ferromagnetism. Finally we focus on some theoretical attempts to understand metallic ferromagnetism. We discuss three artificial one-dimensional models in which the existence of metallic ferromagnetism can be easily proved.
              Bookmark

              Author and article information

              Journal
              26 March 2018
              Article
              1803.09742
              11979779-d51c-4184-96a5-88a426f48d4a

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              Main text (16 pages, 4 figures, 1 table) + Appendices
              cond-mat.str-el cond-mat.mtrl-sci cond-mat.supr-con

              Comments

              Comment on this article