Fish myofibrillar protein is underutilized due to the formation of insoluble aggregates in low salt media. High pressure homogenization (HPH) at 20, 40, and 60 MPa for four passes was applied on bighead carp myofibrillar protein in order to modify its structure and interfacial properties. Changes in aggregation, conformation, solubility, emulsifying and foaming properties of myofibrillar protein were investigated. The aggregates of myofibrillar protein were obviously disrupted by HPH treatment. The size of myofibrillar protein aggregates became smaller and more uniform as the treating pressure increased, accompanied by notable decreases of cross-sectional height and Rq value in AFM image. Furthermore, the conformation of HPH-treated myofibrillar protein was unfolded into a flexible and open structure. α-helix and β-sheet were converted into β-turn and random coil. Surface hydrophobicity and zeta potential were strengthened, along with the exposure of sulfhydryl groups onto molecule surface. On the other hand, solubility, emulsifying activity index (EAI) and foaming capacity (FC) of HPH-treated myofibrillar protein were markedly enhanced with the increasing pressure. Especially after HPH treatment at 60 MPa, myofibrillar protein was almost dissolved in low salt media (solubility 91.86%) with 4.92 fold for EAI and 3.52 fold for FC. But there was little variation in emulsifying and foaming stabilities. These results suggested that HPH treatment has interesting potential to induce the dissociation and unfolding of myofibrillar protein in low salt media, therefore improving its interfacial properties. PRACTICAL APPLICATION: Carp myofibrillar protein was treated by high pressure homogenization (HPH). Aggregates of myofibrillar protein were disrupted into smaller size form. Conformation of myofibrillar protein was unfolded into open and loose structure. Emulsifying and foaming capacities of myofibrillar protein were improved. HPH treatment modified the structure and interfacial properties of myofibrillar protein.