63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The clinical effectiveness and safety of using epidermal growth factor, fibroblast growth factor and granulocyte-macrophage colony stimulating factor as therapeutics in acute skin wound healing: a systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Promoting wound healing is crucial to restore the vital barrier function of injured skin. Growth factor products including epidermal growth factor (EGF), fibroblast growth factor (FGF) and granulocyte-macrophage colony stimulating factor (GM-CSF) have been used for decades although no systematic evaluation exists regarding their effectiveness and safety issues in treating acute skin wounds. This has resulted in a lack of guidelines and standards for proper application regimes. Therefore, this systematic review and meta-analysis was performed to critically evaluate the effectiveness and safety of these growth factors on skin acute wounds and provide guidelines for application regimes.

          Methods

          We searched PubMed/Medline (1980–2020), Cochrane Library (1980–2020), Cochrane CENTRAL (from establishment to 2020), ClinicalTrials.gov (from establishment to 2020), Chinese Journal Full-text Database (CNKI, 1994–2020), China Biology Medicine disc (CBM, 1978–2019), Chinese Scientific Journal Database (VIP, 1989–2020) and Wanfang Database (WFDATA, 1980–2019). Randomized controlled trials (RCTs), quasi-RCTs and controlled clinical trials treating patients with acute skin wounds from various causes and with those available growth factors were included.

          Results

          A total of 7573 papers were identified through database searching; 229 papers including 281 studies were kept after final screening. Administering growth factors significantly shortened the healing time of acute skin wounds, including superficial burn injuries [mean difference (MD) = −3.02; 95% confidence interval (CI):−3.31 ~ −2.74; p < 0.00001], deep burn injuries (MD = −5.63; 95% CI:−7.10 ~ −4.17; p < 0.00001), traumata and surgical wounds (MD = −4.50; 95% CI:−5.55 ~ −3.44; p < 0.00001). Growth factors increased the healing rate of acute skin wounds and decreased scar scores. The incidence of adverse reactions was lower in the growth factor treatment group than in the non-growth factor group.

          Conclusions

          The studied growth factors not only are effective and safe for managing acute skin wounds, but also accelerate their healing with no severe adverse reactions.

          Related collections

          Most cited references246

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement

          Systematic reviews should build on a protocol that describes the rationale, hypothesis, and planned methods of the review; few reviews report whether a protocol exists. Detailed, well-described protocols can facilitate the understanding and appraisal of the review methods, as well as the detection of modifications to methods and selective reporting in completed reviews. We describe the development of a reporting guideline, the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 (PRISMA-P 2015). PRISMA-P consists of a 17-item checklist intended to facilitate the preparation and reporting of a robust protocol for the systematic review. Funders and those commissioning reviews might consider mandating the use of the checklist to facilitate the submission of relevant protocol information in funding applications. Similarly, peer reviewers and editors can use the guidance to gauge the completeness and transparency of a systematic review protocol submitted for publication in a journal or other medium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wound Healing: A Cellular Perspective

            Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Skin Acute Wound Healing: A Comprehensive Review

              Experimental work of the last two decades has revealed the general steps of the wound healing process. This complex network has been organized in three sequential and overlapping steps. The first step of the inflammatory phase is an immediate response to injury; primary sensory neurons sense injury and send danger signals to the brain, to stop bleeding and start inflammation. The following target of the inflammatory phase, led by the peripheral blood mononuclear cells, is to eliminate the pathogens and clean the wound. Once this is completed, the inflammatory phase is resolved and homeostasis is restored. The aim of the proliferative phase, the second phase, is to repair wound damage and begin tissue remodeling. Fibroplasia, reepithelialization, angiogenesis, and peripheral nerve repair are the central actions of this phase. Lastly, the objective of the final phase is to complete tissue remodeling and restore skin integrity. This review provides present day information regarding the status of the participant cells, extracellular matrix, cytokines, chemokines, and growth factors, as well as their interactions with the microenvironment during the wound healing process.
                Bookmark

                Author and article information

                Journal
                Burns Trauma
                Burns Trauma
                burnst
                Burns & Trauma
                Oxford University Press
                2321-3868
                2321-3876
                2022
                07 March 2022
                07 March 2022
                : 10
                : tkac002
                Affiliations
                [1 ] Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine , the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
                [2 ] Shenzhen University , Shenzhen, China
                [3 ] School of Public Health and Management, Chongqing Medical University , Chongqing, China
                [4 ] The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
                [5 ] Research Center for Wound Repair and Tissue Regeneration , Medical Innovation Research Department, The Key Laboratory of PLA Wound Repair and Tissue Regeneration, the Fourth Medical Center of PLA General Hospital, the PLA General Hospital, Beijing 100048, China
                Author notes
                Correspondence. Jun Wu, Email: junwupro@ 123456126.com ; Xiaobing Fu, Email: fuxiaobing@ 123456vip.sina.com

                Joint first authors.

                Author information
                https://orcid.org/0000-0002-3458-2171
                Article
                tkac002
                10.1093/burnst/tkac002
                8900703
                35265723
                11b64e15-d3af-41c8-885a-768d85e26f57
                © The Author(s) 2022. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 July 2021
                : 29 December 2021
                : 7 January 2022
                Page count
                Pages: 00
                Categories
                Research Article
                AcademicSubjects/MED00010

                growth factors,skin wounds,meta-analysis,wound healing
                growth factors, skin wounds, meta-analysis, wound healing

                Comments

                Comment on this article