24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Potential implementation of reservoir computing models based on magnetic skyrmions

      , , ,
      AIP Advances
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Skyrmions on the track.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Real-time computing without stable states: a new framework for neural computation based on perturbations.

            A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead, it is based on principles of high-dimensional dynamical systems in combination with statistical learning theory and can be implemented on generic evolved or found recurrent circuitry. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a sufficiently large and heterogeneous neural circuit may serve as universal analog fading memory. Readout neurons can learn to extract in real time from the current state of such recurrent neural circuit information about current and past inputs that may be needed for diverse tasks. Stable internal states are not required for giving a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine, that, unlike Turing machines, does not require sequential transitions between well-defined discrete internal states. It is supported, as the Turing machine is, by rigorous mathematical results that predict universal computational power under idealized conditions, but for the biologically more realistic scenario of real-time processing of time-varying inputs. Our approach provides new perspectives for the interpretation of neural coding, the design of experiments and data analysis in neurophysiology, and the solution of problems in robotics and neurotechnology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Writing and deleting single magnetic skyrmions.

              Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.
                Bookmark

                Author and article information

                Journal
                AIP Advances
                AIP Advances
                AIP Publishing
                2158-3226
                May 2018
                May 2018
                : 8
                : 5
                : 055602
                Article
                10.1063/1.5006918
                11d0ffb5-683a-40bd-ae17-bd6d54fcbd56
                © 2018
                History

                Comments

                Comment on this article