82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most utility theories of choice assume that the introduction of an irrelevant option (called the decoy) to a choice set does not change the preference between existing options. On the contrary, a wealth of behavioral data demonstrates the dependence of preference on the decoy and on the context in which the options are presented. Nevertheless, neural mechanisms underlying context-dependent preference are poorly understood. In order to shed light on these mechanisms, we design and perform a novel experiment to measure within-subject decoy effects. We find within-subject decoy effects similar to what have been shown previously with between-subject designs. More importantly, we find that not only are the decoy effects correlated, pointing to similar underlying mechanisms, but also these effects increase with the distance of the decoy from the original options. To explain these observations, we construct a plausible neuronal model that can account for decoy effects based on the trial-by-trial adjustment of neural representations to the set of available options. This adjustment mechanism, which we call range normalization, occurs when the nervous system is required to represent different stimuli distinguishably, while being limited to using bounded neural activity. The proposed model captures our experimental observations and makes new predictions about the influence of the choice set size on the decoy effects, which are in contrast to previous models of context-dependent choice preference. Critically, unlike previous psychological models, the computational resource required by our range-normalization model does not increase exponentially as the set size increases. Our results show that context-dependent choice behavior, which is commonly perceived as an irrational response to the presence of irrelevant options, could be a natural consequence of the biophysical limits of neural representation in the brain.

          Author Summary

          While faced with a decision between two options for which you have no clear preference (say, a small cheap TV and a large expensive TV), you are presented with a new but inferior option (say, a medium expensive TV). The mere presence of the new option, which you would not select anyway, shifts your preference toward the expensive large TV. This simple example shows how the introduction of an irrelevant option, called the “decoy,” to the choice set can change preference between existing options, a phenomenon often called the context-dependent preference reversal. A number of models have been proposed to explain context effects. Despite their success, they are either uninformative about the underlying neural mechanisms or they require comparison of every possible pair of option attributes, a computation that is unlikely to be implemented by the nervous system due to its high computational demand and undesirable outcomes when the choice set size increases. Here we present a novel account of the context-dependent preference based on the adjustment of neural response to the set of available options. Moreover, we show results from a novel behavioral task designed to test contrasting predictions of our model and a classic model of context effects.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Normalization of cell responses in cat striate cortex.

          D. Heeger (1992)
          Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficiency and ambiguity in an adaptive neural code.

            We examine the dynamics of a neural code in the context of stimuli whose statistical properties are themselves evolving dynamically. Adaptation to these statistics occurs over a wide range of timescales-from tens of milliseconds to minutes. Rapid components of adaptation serve to optimize the information that action potentials carry about rapid stimulus variations within the local statistical ensemble, while changes in the rate and statistics of action-potential firing encode information about the ensemble itself, thus resolving potential ambiguities. The speed with which information is optimized and ambiguities are resolved approaches the physical limit imposed by statistical sampling and noise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relative reward preference in primate orbitofrontal cortex.

              The orbital part of prefrontal cortex appears to be crucially involved in the motivational control of goal-directed behaviour. Patients with lesions of orbitofrontal cortex show impairments in making decisions about the expected outcome of actions. Monkeys with orbitofrontal lesions respond abnormally to changes in reward expectations and show altered reward preferences. As rewards constitute basic goals of behaviour, we investigated here how neurons in the orbitofrontal cortex of monkeys process information about liquid and food rewards in a typical frontal task, spatial delayed responding. The activity of orbitofrontal neurons increases in response to reward-predicting signals, during the expectation of rewards, and after the receipt of rewards. Neurons discriminate between different rewards, mainly irrespective of the spatial and visual features of reward-predicting stimuli and behavioural reactions. Most reward discriminations reflect the animals' relative preference among the available rewards, as expressed by their choice behaviour, rather than physical reward properties. Thus, neurons in the orbitofrontal cortex appear to process the motivational value of rewarding outcomes of voluntary action.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                July 2012
                July 2012
                19 July 2012
                : 8
                : 7
                : e1002607
                Affiliations
                [1 ]Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
                [2 ]Division of Biology and Computation and Neural Systems, California Institute of Technology, Pasadena, California, United States of America
                [3 ]Division of Psychology and Language Sciences, University College London, London, United Kingdom
                [4 ]Division of the Humanities and Social Sciences, California Institute of Technology Pasadena, California, United States of America
                New York University, United States of America
                Author notes

                Conceived and designed the experiments: AS BDM CC. Performed the experiments: AS BDM. Analyzed the data: AS BDM. Wrote the paper: AS BDM CC. Constructed the model: AS BDM Simulated the model: AS Analyzed the simulation results: AS.

                Article
                PCOMPBIOL-D-12-00223
                10.1371/journal.pcbi.1002607
                3400579
                22829761
                11da9ae8-0933-40d4-af75-4bfe788dd22c
                Soltani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 February 2012
                : 24 May 2012
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Computational Biology
                Computational Neuroscience
                Neuroscience
                Cognitive Neuroscience
                Decision Making
                Behavioral Neuroscience
                Computational Neuroscience

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article