8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macrophage-Based Combination Therapies as a New Strategy for Cancer Immunotherapy

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Cells of the immune system can inhibit tumor growth and progression; however, immune cells can also promote tumor cell growth, survival, and angiogenesis as a result of the immunosuppressive microenvironments. In the last decade, a growing number of new therapeutic strategies focused on reversing the immunosuppressive status of tumor microenvironments (TMEs), to reprogram the TME to be normal, and to further activate the antitumor functions of immune cells. Most of the “hot tumors” are encompassed with M2 macrophages promoting tumor growth, and the accumulation of M2 macrophages into tumor islets leads to poor prognosis in a wide variety of tumors. Summary: Therefore, how to uncover more immunosuppressive signals and to reverse the M2 tumor-associated macrophages (TAMs) to M1-type macrophages is essential for reversing the immunosuppressive state. Except for reeducation of TAMs in the cancer immunotherapy, macrophages as central effectors and regulators of the innate immune system have the capacity of phagocytosis and immune modulation in macrophage-based cell therapies. Key Messages: We review the current macrophage-based cell therapies that use genetic engineering to augment macrophage functionalities with antitumor activity for the application of novel genetically engineered immune cell therapeutics. A combination of TAM reeducation and macrophage-based cell strategy may bring us closer to achieving the original goals of curing cancer. In this review, we describe the characteristics, immune status, and tumor immunotherapy strategies of macrophages to provide clues and evidences for future macrophage-based immune cell therapies.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer

          Pembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non-small-cell lung cancer (NSCLC), with increased activity in tumors that express programmed death ligand 1 (PD-L1).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

            An improvement in overall survival among patients with metastatic melanoma has been an elusive goal. In this phase 3 study, ipilimumab--which blocks cytotoxic T-lymphocyte-associated antigen 4 to potentiate an antitumor T-cell response--administered with or without a glycoprotein 100 (gp100) peptide vaccine was compared with gp100 alone in patients with previously treated metastatic melanoma. A total of 676 HLA-A*0201-positive patients with unresectable stage III or IV melanoma, whose disease had progressed while they were receiving therapy for metastatic disease, were randomly assigned, in a 3:1:1 ratio, to receive ipilimumab plus gp100 (403 patients), ipilimumab alone (137), or gp100 alone (136). Ipilimumab, at a dose of 3 mg per kilogram of body weight, was administered with or without gp100 every 3 weeks for up to four treatments (induction). Eligible patients could receive reinduction therapy. The primary end point was overall survival. The median overall survival was 10.0 months among patients receiving ipilimumab plus gp100, as compared with 6.4 months among patients receiving gp100 alone (hazard ratio for death, 0.68; P<0.001). The median overall survival with ipilimumab alone was 10.1 months (hazard ratio for death in the comparison with gp100 alone, 0.66; P=0.003). No difference in overall survival was detected between the ipilimumab groups (hazard ratio with ipilimumab plus gp100, 1.04; P=0.76). Grade 3 or 4 immune-related adverse events occurred in 10 to 15% of patients treated with ipilimumab and in 3% treated with gp100 alone. There were 14 deaths related to the study drugs (2.1%), and 7 were associated with immune-related adverse events. Ipilimumab, with or without a gp100 peptide vaccine, as compared with gp100 alone, improved overall survival in patients with previously treated metastatic melanoma. Adverse events can be severe, long-lasting, or both, but most are reversible with appropriate treatment. (Funded by Medarex and Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00094653.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.

              Blockade of programmed death 1 (PD-1), an inhibitory receptor expressed by T cells, can overcome immune resistance. We assessed the antitumor activity and safety of BMS-936558, an antibody that specifically blocks PD-1. We enrolled patients with advanced melanoma, non-small-cell lung cancer, castration-resistant prostate cancer, or renal-cell or colorectal cancer to receive anti-PD-1 antibody at a dose of 0.1 to 10.0 mg per kilogram of body weight every 2 weeks. Response was assessed after each 8-week treatment cycle. Patients received up to 12 cycles until disease progression or a complete response occurred. A total of 296 patients received treatment through February 24, 2012. Grade 3 or 4 drug-related adverse events occurred in 14% of patients; there were three deaths from pulmonary toxicity. No maximum tolerated dose was defined. Adverse events consistent with immune-related causes were observed. Among 236 patients in whom response could be evaluated, objective responses (complete or partial responses) were observed in those with non-small-cell lung cancer, melanoma, or renal-cell cancer. Cumulative response rates (all doses) were 18% among patients with non-small-cell lung cancer (14 of 76 patients), 28% among patients with melanoma (26 of 94 patients), and 27% among patients with renal-cell cancer (9 of 33 patients). Responses were durable; 20 of 31 responses lasted 1 year or more in patients with 1 year or more of follow-up. To assess the role of intratumoral PD-1 ligand (PD-L1) expression in the modulation of the PD-1-PD-L1 pathway, immunohistochemical analysis was performed on pretreatment tumor specimens obtained from 42 patients. Of 17 patients with PD-L1-negative tumors, none had an objective response; 9 of 25 patients (36%) with PD-L1-positive tumors had an objective response (P=0.006). Anti-PD-1 antibody produced objective responses in approximately one in four to one in five patients with non-small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use. Preliminary data suggest a relationship between PD-L1 expression on tumor cells and objective response. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00730639.).
                Bookmark

                Author and article information

                Journal
                KDD
                KDD
                10.1159/issn.2296-9357
                Kidney Diseases
                S. Karger AG
                2296-9381
                2296-9357
                2022
                January 2022
                28 September 2021
                : 8
                : 1
                : 26-43
                Affiliations
                [_a] aDepartment of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
                [_b] bInstitute of Hematology, Zhejiang University, Hangzhou, China
                [_c] cDepartment of Medical Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
                [_d] dZhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
                Article
                518664 Kidney Dis 2022;8:26–43
                10.1159/000518664
                35224005
                11ebda5b-fee1-4dc5-ba78-26bedfe026ab
                © 2021 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 09 January 2021
                : 16 July 2021
                Page count
                Figures: 5, Tables: 1, Pages: 18
                Categories
                Review Article

                Cardiovascular Medicine,Nephrology
                Macrophage-based cell therapies,Phagocytosis checkpoints,Tumor-associated macrophages,Macrophages

                Comments

                Comment on this article