33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Norovirus Recombinant Strains Isolated from Gastroenteritis Outbreaks in Southern Brazil, 2004–2011

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Noroviruses are recognized as one of the leading causes of viral acute gastroenteritis, responsible for almost 50% of acute gastroenteritis outbreaks worldwide. The positive single-strand RNA genome of noroviruses presents a high mutation rate and these viruses are constantly evolving by nucleotide mutation and genome recombination. Norovirus recombinant strains have been detected as causing acute gastroenteritis outbreaks in several countries. However, in Brazil, only one report of a norovirus recombinant strain (GII.P7/GII.20) has been described in the northern region so far. For this study, 38 norovirus strains representative of outbreaks, 11 GII.4 and 27 non-GII.4, were randomly selected and amplified at the ORF1/ORF2 junction. Genetic recombination was identified by constructing phylogenetic trees of the polymerase and capsid genes, and further SimPlot and Bootscan analysis of the ORF1/ORF2 overlap. Sequence analysis revealed that 23 out of 27 (85%) non-GII.4 noroviruses were recombinant strains, characterized as: GII.P7/GII.6 (n = 9); GIIP.g/GII.12 (n = 4); GII.P16/GII.3 (n = 4); GII.Pe/GII.17 (n = 2); GII.P7/GII.14 (n = 1); GII.P13/GII.17 (n = 1); GII.P21/GII.3 (n = 1); and GII.P21/GII.13 (n = 1). On the other hand, among the GII.4 variants analyzed (Den Haag_2006b and New Orleans_2009) no recombination was observed. These data revealed the great diversity of norovirus recombinant strains associated with outbreaks, and describe for the first time these recombinant types circulating in Brazil. Our results obtained in southern Brazil corroborate the previous report for the northern region, demonstrating that norovirus recombinant strains are circulating more frequently than we expected. In addition, these results emphasize the relevance of including ORF1/ORF2-based analysis in surveillance studies as well as the importance of characterizing strains from other Brazilian regions to obtain epidemiological data for norovirus recombinant strains circulating in the country.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination.

          The development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine is likely to depend on knowledge of circulating variants of genes other than the commonly sequenced gag and env genes. In addition, full-genome data are particularly limited for HIV-1 subtype C, currently the most commonly transmitted subtype in India and worldwide. Likewise, little is known about sequence variation of HIV-1 in India, the country facing the largest burden of HIV worldwide. Therefore, the objective of this study was to clone and characterize the complete genome of HIV-1 from seroconverters infected with subtype C variants in India. Cocultured HIV-1 isolates were obtained from six seroincident individuals from Pune, India, and virtually full-length HIV-1 genomes were amplified, cloned, and sequenced from each. Sequence analysis revealed that five of the six genomes were of subtype C, while one was a mosaic of subtypes A and C, with multiple breakpoints in env, nef, and the 3' long terminal repeat as determined by both maximal chi2 analysis and phylogenetic bootstrapping. Sequences were compared for preservation of known cytotoxic T lymphocyte (CTL) epitopes. Compared with those of the HIV-1LAI sequence, 38% of well-defined CTL epitopes were identical. The proportion of nonconservative substitutions for Env, at 61%, was higher (P < 0.001) than those for Gag (24%), Pol (18%), and Nef (32%). Therefore, characterized CTL epitopes demonstrated substantial differences from subtype B laboratory strains, which were most pronounced in Env. Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Norovirus gastroenteritis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001-2007.

              Noroviruses (NoVs) are the most common cause of viral gastroenteritis. Their high incidence and importance in health care facilities result in a great impact on public health. Studies from around the world describing increasing prevalence have been difficult to compare because of differing nomenclatures for variants of the dominant genotype, GII.4. We studied the global patterns of GII.4 epidemiology in relation to its genetic diversity. Data from NoV outbreaks with dates of onset from January 2001 through March 2007 were collected from 15 institutions on 5 continents. Partial genome sequences (n=775) were collected, allowing phylogenetic comparison of data from different countries. The 15 institutions reported 3098 GII.4 outbreaks, 62% of all reported NoV outbreaks. Eight GII.4 variants were identified. Four had a global distribution--the 1996, 2002, 2004, and 2006b variants. The 2003Asia and 2006a variants caused epidemics, but they were geographically limited. Finally, the 2001 Japan and 2001 Henry variants were found across the world but at low frequencies. NoV epidemics resulted from the global spread of GII.4 strains that evolved under the influence of population immunity. Lineages show notable (and currently unexplained) differences in geographic prevalence. Establishing a global NoV network by which data on strains with the potential to cause pandemics can be rapidly exchanged may lead to improved prevention and intervention strategies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                26 April 2016
                2016
                : 11
                : 4
                : e0145391
                Affiliations
                [001]Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
                University of Malaya, MALAYSIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TMF JSRA JPGL MPM. Performed the experiments: TMF JSRA. Analyzed the data: TMF JSRA JPGL MPM. Contributed reagents/materials/analysis tools: TMF JSRA JPGL MPM. Wrote the paper: TMF JSRA JPGL MPM.

                Article
                PONE-D-15-35711
                10.1371/journal.pone.0145391
                4846083
                27116353
                11ec6d3a-0098-4f05-ab72-5c7be1de35e7
                © 2016 Fumian et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 August 2015
                : 3 December 2015
                Page count
                Figures: 4, Tables: 1, Pages: 12
                Funding
                This work was funded by Excellence Program of Research (PROEP-CNPq/IOC) and General Coordination of Laboratories/Secretary of Health Surveillance, Ministry of Health. MP Miagostovich and JPG Leite are CNPq fellows. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Viral Packaging
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                People and places
                Geographical locations
                South America
                Brazil
                Biology and life sciences
                Genetics
                DNA
                DNA recombination
                Biology and life sciences
                Biochemistry
                Nucleic acids
                DNA
                DNA recombination
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Polymerases
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Caliciviruses
                Norovirus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Caliciviruses
                Norovirus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Caliciviruses
                Norovirus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Caliciviruses
                Norovirus
                Research and Analysis Methods
                Database and Informatics Methods
                Biological Databases
                Sequence Databases
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Databases
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Databases
                Medicine and Health Sciences
                Gastroenterology and Hepatology
                Gastroenteritis
                Custom metadata
                The nucleotide sequences obtained in this study were submitted to the National Center for Biotechnology Information (GenBank, http://www.ncbi.nlm.nih.gov/) and received the following accession numbers: KR074148 - KR074191.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article