48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skeletal muscle pathology in Huntington's disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a polyglutamine stretch within the huntingtin protein (HTT). The neurological symptoms, that involve motor, cognitive and psychiatric disturbances, are caused by neurodegeneration that is particularly widespread in the basal ganglia and cereberal cortex. HTT is ubiquitously expressed and in recent years it has become apparent that HD patients experience a wide array of peripheral organ dysfunction including severe metabolic phenotype, weight loss, HD-related cardiomyopathy and skeletal muscle wasting. Although skeletal muscles pathology became a hallmark of HD, the mechanisms underlying muscular atrophy in this disorder are unknown. Skeletal muscles account for approximately 40% of body mass and are highly adaptive to physiological and pathological conditions that may result in muscle hypertrophy (due to increased mechanical load) or atrophy (inactivity, chronic disease states). The atrophy is caused by degeneration of myofibers and their replacement by fibrotic tissue is the major pathological feature in many genetic muscle disorders. Under normal physiological conditions the muscle function is orchestrated by a network of intrinsic hypertrophic and atrophic signals linked to the functional properties of the motor units that are likely to be imbalanced in HD. In this article, we highlight the emerging field of research with particular focus on the recent studies of the skeletal muscle pathology and the identification of new disease-modifying treatments.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue.

          The expansion of CAG triplet repeats in the translated region of the human HD gene, encoding a protein (huntingtin) of unknown function, is a dominant mutation leading to manifestation of Huntington's disease. Targeted disruption of the homologous mouse gene (Hdh), to examine the normal role of huntingtin, shows that this protein is functionally indispensable, since nullizygous embryos become developmentally retarded and disorganized, and die between days 8.5 and 10.5 of gestation. Based on the observation that the level of the regionalized apoptotic cell death in the embryonic ectoderm, a layer expressing the Hdh gene, is much higher than normal in the null mutants, we propose that huntingtin is involved in processes counterbalancing the operation of an apoptotic pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation.

            Transgenic mice expressing exon 1 of the human Huntington's disease (HD) gene carrying a 141-157 CAG repeat (line R6/2) develop a progressive neurological phenotype with motor symptoms resembling those seen in HD. We have characterized the motor deficits in R6/2 mice using a battery of behavioral tests selected to measure motor aspects of swimming, fore- and hindlimb coordination, balance, and sensorimotor gating [swimming tank, rotarod, raised beam, fore- and hindpaw footprinting, and acoustic startle/prepulse inhibition (PPI)]. Behavioral testing was performed on female hemizygotic R6/2 transgenic mice (n = 9) and female wild-type littermates (n = 22) between 5 and 14 weeks of age. Transgenic mice did not show an overt behavioral phenotype until around 8 weeks of age. However, as early as 5-6 weeks of age they had significant difficulty swimming, traversing the narrowest square (5 mm) raised beam, and maintaining balance on the rotarod at rotation speeds of 33-44 rpm. Furthermore, they showed significant impairment in prepulse inhibition (an impairment also seen in patients with HD). Between 8 and 15 weeks, R6/2 transgenic mice showed a progressive deterioration in performance on all of the motor tests. Thus R6/2 mice show measurable deficits in motor behavior that begin subtly and increase progressively until death. Our data support the use of R6/2 mice as a model of HD and indicate that they may be useful for evaluating therapeutic strategies for HD, particularly those aimed at reducing the severity of motor symptoms or slowing the course of the disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Huntington disease.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                06 October 2014
                2014
                : 5
                : 380
                Affiliations
                [1] 1Department of Social Medicine, Poznan University of Medical Sciences Poznan, Poland
                [2] 2MRC National Institute for Medical Research London, UK
                [3] 3Department of Medical and Molecular Genetics, King's College London London, UK
                Author notes

                Edited by: Julio L. Vergara, University of California, Los Angeles, USA

                Reviewed by: Seth L. Robia, Loyola University Chicago, USA; Andrew Alvin Voss, Wright State University, USA

                *Correspondence: Daniel Zielonka, Department of Social Medicine, Poznan University of Medical Sciences, Rokietnicka Str., No. 5 “C,” 60-806 Poznan, Poland e-mail: daniel.zielonka@ 123456gmail.com ;
                Michal Mielcarek, Department of Medical and Molecular Genetics, School of Medicine, King's College London, 8th Floor Tower Wing, Guy's Hospital Great Maze Pond, London, SE1 9RT, UK e-mail: michal.mielcarek@ 123456kcl.ac.uk

                This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00380
                4186279
                25339908
                11ee74aa-a89d-4b5b-9cb8-baca9841f562
                Copyright © 2014 Zielonka, Piotrowska, Marcinkowski and Mielcarek.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 July 2014
                : 13 September 2014
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 49, Pages: 6, Words: 4451
                Categories
                Physiology
                Mini Review Article

                Anatomy & Physiology
                huntington's disease,peripheral pathology,skeletal muscle atrophy,disease modifying treatment

                Comments

                Comment on this article