5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoscale Tungsten-Microbial Interface of the Metal Immobilizing Thermoacidophilic Archaeon Metallosphaera sedula Cultivated With Tungsten Polyoxometalate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inorganic systems based upon polyoxometalate (POM) clusters provide an experimental approach to develop artificial life. These artificial symmetric anionic macromolecules with oxidometalate polyhedra as building blocks were shown to be well suited as inorganic frameworks for complex self-assembling and organizing systems with emergent properties. Analogously to mineral cells based on iron sulfides, POMs are considered as inorganic cells in facilitating prelife chemical processes and displaying “life-like” characteristics. However, the relevance of POMs to life-sustaining processes (e.g., microbial respiration) has not yet been addressed, while iron sulfides are very well known as ubiquitous mineral precursors and energy sources for chemolithotrophic metabolism. Metallosphaera sedula is an extreme metallophilic and thermoacidophilic archaeon, which flourishes in hot acid and respires by metal oxidation. In the present study we provide our observations on M. sedula cultivated on tungsten polyoxometalate (W-POM). The decomposition of W-POM macromolecular clusters and the appearance of low molecular weight W species (e.g., WO) in the presence of M. sedula have been detected by electrospray ionization mass spectrometry (ESI-MS) analysis. Here, we document the presence of metalloorganic assemblages at the interface between M. sedula and W-POM resolved down to the nanometer scale using scanning and transmission electron microscopy (SEM and TEM) coupled to electron energy loss spectroscopy (EELS). High-resolution TEM (HR-TEM) and selected-area electron diffraction (SAED) patterns indicated the deposition of redox heterogeneous tungsten species on the S-layer of M. sedula along with the accumulation of intracellular tungsten-bearing nanoparticles, i.e., clusters of tungsten atoms. These results reveal the effectiveness of the analytical spectroscopy coupled to the wet chemistry approach as a tool in the analysis of metal–microbial interactions and microbial cultivation on supramolecular self-assemblages based on inorganic metal clusters. We discuss the possible mechanism of W-POM decomposition by M. sedula in light of unique electrochemical properties of POMs. The findings presented herein highlight unique metallophilicity in hostile environments, extending our knowledge of the relevance of POMs to life-sustaining processes, understanding of the transition of POMs as inorganic prebiotic model to life-sustainable material precursors and revealing biogenic signatures obtained after the decomposition of an artificial inorganic compound, which previously was not associated with any living matter.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Explicit local exchange-correlation potentials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Metals, minerals and microbes: geomicrobiology and bioremediation.

            G M Gadd (2010)
            Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices.

              Polyoxometalates represent a diverse range of molecular clusters with an almost unmatched range of physical properties and the ability to form structures that can bridge several length scales. The new building block principles that have been discovered are beginning to allow the design of complex clusters with desired properties and structures and several structural types and novel physical properties are examined. In this critical review the synthetic and design approaches to the many polyoxometalate cluster types are presented encompassing all the sub-types of polyoxometalates including, isopolyoxometalates, heteropolyoxometalates, and reduced molybdenum blue systems. As well as the fundamental structure and bonding aspects, the final section is devoted to discussing these clusters in the context of contemporary and emerging interdisciplinary interests from areas as diverse as anti-viral agents, biological ion transport models, and materials science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                07 June 2019
                2019
                : 10
                : 1267
                Affiliations
                [1] 1Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna , Vienna, Austria
                [2] 2Graz Centre for Electron Microscopy , Graz, Austria
                [3] 3Department of Biophysical Chemistry, University of Vienna , Vienna, Austria
                [4] 4Core Facility Cell Imaging and Ultrastructure Research, University of Vienna , Vienna, Austria
                Author notes

                Edited by: Mónica Sánchez-Román, VU University Amsterdam, Netherlands

                Reviewed by: Johann Heider, University of Marburg, Germany; Virginia Helena Albarracín, Center for Electron Microscopy (CIME), Argentina; Tim Magnuson, Idaho State University, United States

                *Correspondence: Tetyana Milojevic, tetyana.milojevic@ 123456univie.ac.at

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01267
                6593293
                31275255
                11f6803d-1b8e-4186-a57f-2fbc33296f6c
                Copyright © 2019 Milojevic, Albu, Blazevic, Gumerova, Konrad and Cyran.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 July 2018
                : 22 May 2019
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 63, Pages: 15, Words: 0
                Funding
                Funded by: Austrian Science Fund 10.13039/501100002428
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                archaea,biomineralisation,metallosphaera sedula,microbe–mineral interactions,tungsten

                Comments

                Comment on this article