The review focuses on biochemical metabolisms of conventional buffers and emphasizes advantages of sodium pyruvate (Pyr) in the correction of intracellular acidosis. Exogenous lactate (Lac) as an alternative of natural buffer, bicarbonate, consumes intracellular protons on an equimolar basis, regenerating bicarbonate anions in plasma while the completion of gluconeogenesis and/or oxidation occurs via tricarboxylic-acid cycle in mitochondria mainly in liver and kidney, or heart. The general assumption that Lac is ‘metabolized to bicarbonate’ in liver to serve as a buffer has been questioned. Pyr as a novel buffer would be superior to conventional ones in the correction of metabolic acidosis. Several likely biochemical mechanisms of Pyr action are discussed. Experimental evidence, in vivo, strongly suggested that Pyr would be particularly efficient in the correction of severe acidemia: type A lactic acidosis, hypercapnia with cardiac arrest, and diabetic and alcoholic ketoacidosis in animal experiments and clinic settings. Because of its multi-cytoprotection, Pyrs not only correct acidosis, but also benefit theunderlying dysfunction of vital organs. In addition, Pyr is also a potential buffer component of dialysis solutions. However, the instability of Pyr in aqueous solutions restricts its clinical applications as a therapeutic agent. Attempts to create a stable Pyr preparation are needed.