4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.

          The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co((II/III))tris(bipyridyl)-based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular design of YD2-o-C8 greatly retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the oxidized cobalt mediator, which enables attainment of strikingly high photovoltages approaching 1 volt. Because the YD2-o-C8 porphyrin harvests sunlight across the visible spectrum, large photocurrents are generated. Cosensitization of YD2-o-C8 with another organic dye further enhances the performance of the device, leading to a measured power conversion efficiency of 12.3% under simulated air mass 1.5 global sunlight.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large, solution-processable graphene quantum dots as light absorbers for photovoltaics.

            Graphenes have very attractive properties for photovoltaics. Their tunable bandgap and large optical absorptivity are desirable for efficient light harvesting. Their electronic levels and interfacing with other materials for charge transfer processes can both be tuned with well-developed carbon chemistry. Graphenes have also been shown to have very large charge mobilities, which could be useful for charge collection in solar cells. In addition, they consist of elements abundant on Earth and are environmentally friendly. However, these important properties have not been taken advantage of because graphenes that are large enough to be useful for photovoltaics have extremely poor solubility and have a strong tendency to aggregate into graphite. Here we present a novel solubilization strategy for large graphene nanostructures. It has enabled us to synthesize solution-processable, black graphene quantum dots with uniform size through solution chemistry, and we show that they can be used as sensitizers for solar cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide.

              Using reduced graphene oxide (RGO) as a two-dimensional support, we have succeeded in selective anchoring of semiconductor and metal nanoparticles at separate sites. Photogenerated electrons from UV-irradiated TiO(2) are transported across RGO to reduce silver ions into silver nanoparticles at a location distinct from the TiO(2) anchored site. The ability of RGO to store and shuttle electrons, as visualized via a stepwise electron transfer process, demonstrates its capability to serve as a catalyst nanomat and transfer electrons on demand to adsorbed species. These findings pave the way for the development of next generation catalyst systems and can spur advancements in graphene-based composites for chemical and biological sensors.
                Bookmark

                Author and article information

                Journal
                JMCCCX
                Journal of Materials Chemistry C
                J. Mater. Chem. C
                Royal Society of Chemistry (RSC)
                2050-7526
                2050-7534
                2014
                2014
                : 2
                : 16
                : 2894
                Article
                10.1039/c3tc32395a
                1200051d-22b2-41ed-9ca5-7a4f9661ad0d
                © 2014
                Product
                Self URI (article page): http://xlink.rsc.org/?DOI=c3tc32395a

                Comments

                Comment on this article