56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Anti-Apoptotic and Cardioprotective Effects of Salvianolic Acid A on Rat Cardiomyocytes following Ischemia/Reperfusion by DUSP-Mediated Regulation of the ERK1/2/JNK Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dt max), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale.

          Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival.

            Mitogen-activated protein kinase (MAPK) pathways constitute a large modular network that regulates a variety of physiological processes, such as cell growth, differentiation, and apoptotic cell death. The function of the ERK pathway has been depicted as survival-promoting, in essence by opposing the proapoptotic activity of the stress-activated c-Jun NH(2)-terminal kinase (JNK)/p38 MAPK pathways. However, recently published work suggests that extracellular regulated kinase (ERK) pathway activity is suppressed by JNK/p38 kinases during apoptosis induction. In this review, we will summarize the current knowledge about JNK/p38-mediated mechanisms that negatively regulate the ERK pathway. In particular, we will focus on phosphatases (PP2A, MKPs) as inhibitors of ERK pathway activity in regulating apoptosis. A model proposed in this review places the negative regulation of the ERK pathway in a central position for the cellular decision-making process that determines whether cells will live or die in response to apoptosis-promoting signals. In addition, we will discuss the potential functional relevance of negative regulation of ERK pathway activity, for physiological and pathological conditions (e.g., cellular transformation).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diverse physiological functions for dual-specificity MAP kinase phosphatases.

              A structurally distinct subfamily of ten dual-specificity (Thr/Tyr) protein phosphatases is responsible for the regulated dephosphorylation and inactivation of mitogen-activated protein kinase (MAPK) family members in mammals. These MAPK phosphatases (MKPs) interact specifically with their substrates through a modular kinase-interaction motif (KIM) located within the N-terminal non-catalytic domain of the protein. In addition, MAPK binding is often accompanied by enzymatic activation of the C-terminal catalytic domain, thus ensuring specificity of action. Despite our knowledge of the biochemical and structural basis for the catalytic mechanism of the MKPs, we know much less about their regulation and physiological functions in mammalian cells and tissues. However, recent studies employing a range of model systems have begun to reveal essential non-redundant roles for the MKPs in determining the outcome of MAPK signalling in a variety of physiological contexts. These include development, immune system function, metabolic homeostasis and the regulation of cellular stress responses. Interestingly, these functions may reflect both restricted subcellular MKP activity and changes in the levels of signalling through multiple MAPK pathways.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                14 July 2014
                : 9
                : 7
                : e102292
                Affiliations
                [1 ]Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
                [2 ]The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
                Virginia Commonwealth University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DL XC. Performed the experiments: TX XW. Analyzed the data: QC SZ. Contributed reagents/materials/analysis tools: YL DP. Wrote the paper: TX XW. Revised the manuscript: DL.

                Article
                PONE-D-13-46624
                10.1371/journal.pone.0102292
                4096914
                25019380
                1205e025-8d3f-4a80-b90a-14827916d60d
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 November 2013
                : 17 June 2014
                Page count
                Pages: 14
                Funding
                This work was supported by Doctoral Fund of Ministry of Education of China (Grant No. 20123237110006).The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Cell biology
                Signal transduction
                Cell signaling
                Signaling cascades
                ERK signaling cascade
                Anti-Apoptotic Signaling
                Molecular Cell Biology
                Organisms
                Animals
                Vertebrates
                Mammals
                Rodents
                Rats
                Medicine and Health Sciences
                Hematology
                Hemodynamics
                Cardiology
                Cardiovascular Pharmacology
                Myocardial Infarction
                Vascular Medicine
                Aortic Diseases
                Coronary Artery Disease
                Research and Analysis Methods
                Model Organisms
                Animal Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article