105
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis ( Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence.

          Author Summary

          Currently, approximately one-third of the world's population is latently infected with Mycobacterium tuberculosis ( Mtb), the bacterium that causes tuberculosis (TB). A central question in TB research is to identify the mechanisms that allow the organism to persist for long periods of time in humans. The mycobacterial cell wall has a high lipid content and contains several important lipid groups, including poly- and di-acyltrehaloses (PAT/DAT), sulfolipids (SL-1), and phthiocerol dimycocerosates (PDIM). These lipids are produced and actively secreted during infection to subvert the host immune system, eventually leading to Mtb persistence. We have discovered that the regulatory protein WhiB3 controls the differential production of PAT, DAT, SL-1, and PDIM and the storage lipid triacylglycerol (TAG) in response to fluctuations in the intracellular redox environment. We demonstrated that WhiB3 directly regulates lipid production by binding to the promoter regions of lipid biosynthetic genes in a redox-dependent manner. We also discovered that through this regulatory process, WhiB3 controls fatty acid metabolism and maintains intracellular redox homeostasis by channeling toxic reducing equivalents into lipid anabolism. Thus, our results suggest that Mtb lipid anabolism functions as a reductant sink to neutralize the reductive stress associated with the catabolism of host lipids during infection. These findings may serve as a model foundation for how pathogens adjust their metabolism to cope with stresses encountered during infection.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project.

          To estimate the risk and prevalence of Mycobacterium tuberculosis (MTB) infection and tuberculosis (TB) incidence, prevalence, and mortality, including disease attributable to human immunodeficiency virus (HIV), for 212 countries in 1997. A panel of 86 TB experts and epidemiologists from more than 40 countries was chosen by the World Health Organization (WHO), with final agreement being reached between country experts and WHO staff. Incidence of TB and mortality in each country was determined by (1) case notification to the WHO, (2) annual risk of infection data from tuberculin surveys, and (3) data on prevalence of smear-positive pulmonary disease from prevalence surveys. Estimates derived from relatively poor data were strongly influenced by panel member opinion. Objective estimates were derived from high-quality data collected recently by approved procedures. Agreement was reached by (1) participants reviewing methods and data and making provisional estimates in closed workshops held at WHO's 6 regional offices, (2) principal authors refining estimates using standard methods and all available data, and (3) country experts reviewing and adjusting these estimates and reaching final agreement with WHO staff. In 1997, new cases of TB totaled an estimated 7.96 million (range, 6.3 million-11.1 million), including 3.52 million (2.8 million-4.9 million) cases (44%) of infectious pulmonary disease (smear-positive), and there were 16.2 million (12.1 million-22.5 million) existing cases of disease. An estimated 1.87 million (1.4 million-2.8 million) people died of TB and the global case fatality rate was 23% but exceeded 50% in some African countries with high HIV rates. Global prevalence of MTB infection was 32% (1.86 billion people). Eighty percent of all incident TB cases were found in 22 countries, with more than half the cases occurring in 5 Southeast Asian countries. Nine of 10 countries with the highest incidence rates per capita were in Africa. Prevalence of MTB/HIV coinfection worldwide was 0.18% and 640000 incident TB cases (8%) had HIV infection. The global burden of tuberculosis remains enormous, mainly because of poor control in Southeast Asia, sub-Saharan Africa, and eastern Europe, and because of high rates of M tuberculosis and HIV coinfection in some African countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production.

            Single cell oils (SCOs) are now produced by various microorganisms as commercial sources of arachidonic acid (ARA) and docosahexaenoic acid (DHA). These oils are now used extensively as dietary supplements in infant formulas. An understanding of the underlying biochemistry and genetics of oil accumulation in such microorganisms is therefore essential if lipid yields are to be improved. Also an understanding of the biosynthetic pathways involved in the production of these polyunsaturated fatty acids (PUFAs) is also highly desirable as a prerequisite to increasing their content in the oils. An account is provided of the biosynthetic machinery that is necessary to achieve oil accumulation in an oleaginous species where it can account for lipid build up in excess of 70% of the cell biomass. Whilst PUFA production in most microorganisms uses a conventional fatty acid synthase (FAS) system followed by a series of desaturases and elongases, in Schizochytrium sp., and probably related thraustochytrid marine protists, PUFA synthesis now appears to be via a polyketide synthase (PKS) route. This route is discussed. It clearly represents a major departure from conventional fatty acid biosynthesis, possibly as a means of decreasing the amount of NADPH that is needed in the overall process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.

              Fifty million new infections with Mycobacterium tuberculosis occur annually, claiming 2-3 million lives from tuberculosis worldwide. Despite the apparent lack of significant genetic heterogeneity between strains of M. tuberculosis, there is mounting evidence that considerable heterogeneity exists in molecules important in disease pathogenesis. These differences may manifest in the ability of some isolates to modify the host cellular immune response, thereby contributing to the observed diversity of clinical outcomes. Here we describe the identification and functional relevance of a highly biologically active lipid species-a polyketide synthase-derived phenolic glycolipid (PGL) produced by a subset of M. tuberculosis isolates belonging to the W-Beijing family that show 'hyperlethality' in murine disease models. Disruption of PGL synthesis results in loss of this hypervirulent phenotype without significantly affecting bacterial load during disease. Loss of PGL was found to correlate with an increase in the release of the pro-inflammatory cytokines tumour-necrosis factor-alpha and interleukins 6 and 12 in vitro. Furthermore, the overproduction of PGL by M. tuberculosis or the addition of purified PGL to monocyte-derived macrophages was found to inhibit the release of these pro-inflammatory mediators in a dose-dependent manner.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2009
                August 2009
                14 August 2009
                : 5
                : 8
                : e1000545
                Affiliations
                [1 ]Department of Microbiology, Centers for Free Radical Biology, AIDS Research, and Emerging Infections and Emergency Preparedness, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                [2 ]Department of Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
                [3 ]Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                Johns Hopkins School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: AS MIV AJS. Performed the experiments: AS DKC DM LG MBR. Analyzed the data: AS DKC DM LG MIV MBR AJS. Contributed reagents/materials/analysis tools: MBR. Wrote the paper: AS DKC DM LG MIV AJS.

                Article
                09-PLPA-RA-0343R3
                10.1371/journal.ppat.1000545
                2718811
                19680450
                120e3607-ccc1-4141-bbda-0feaf5549eae
                Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 March 2009
                : 16 July 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Infectious Diseases/Bacterial Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article