69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3 −/−×Irf7 −/− double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3 −/−×Irf5 −/−×Irf7 −/− triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor ( Ifnar −/− ). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar −/− mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs −/− mDC. The relative equivalence of TKO and Mavs −/− responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5.

          Author Summary

          Host pathogen sensors, including those of the Toll-like receptor and RIG-I like receptor (RLR) families, detect viral infection in cells. Signaling through these receptors triggers expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), in part through the IRF family of transcription factors. Previous studies with West Nile virus (WNV) showed that IRF-3 and IRF-7 control IFN expression in fibroblasts and neurons, whereas macrophages and myeloid dendritic cells (mDC) retained the ability to induce IFN-β without IRF-3 and IRF-7. In the current study, we generated Irf3 −/− × Irf5 −/− × Irf7 −/− (TKO) mice to characterize the contributions of specific IRF transcription factors to IFN and ISG induction in response to WNV infection in cells and in mice. We found that induction of IFN and ISGs was largely abolished in TKO mDC, but sustained in TKO macrophages. Because IFN and ISG induction also was absent in mDC lacking MAVS, a key mediator of RLR signaling, our results suggest a novel signaling link between IRF-5 and MAVS. This study establishes the molecular pathways responsible for IFN induction in mDC and suggests a cross-talk between IRF-5 and RLR signaling pathways.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.

          RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-alpha/beta immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-beta expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-kappaB-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-beta promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival.

            West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus

              Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans. Supplementary information The online version of this article (doi:10.1038/nm1240) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2013
                January 2013
                3 January 2013
                : 9
                : 1
                : e1003118
                Affiliations
                [1 ]Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [2 ]Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
                [3 ]University of Washington School of Medicine, Seattle, Washington, United States of America
                [4 ]Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [5 ]Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, United States of America
                [6 ]Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                Mount Sinai School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HML AL MSS LT MG KF MSD. Performed the experiments: HML AL MSS SCV LC LT MMB. Analyzed the data: HML AL CW MSS AH LC LT AVM MG KF MSD. Wrote the paper: HML CW MSS LT HWV MG KF JNZ MSD. Supervised work performed in his or her laboratory: HWV AVM MG KF MSD. Financially supported the studies: JNZ MG KF MSD.

                [¤]

                Current address: Department of Pediatrics, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America.

                Article
                PPATHOGENS-D-12-01922
                10.1371/journal.ppat.1003118
                3536698
                23300459
                120ffa2c-619b-4a7d-b165-5890182a7c36
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 August 2012
                : 23 November 2012
                Page count
                Pages: 15
                Funding
                The authors would like to acknowledge the National Institutes of Health for support of work in their laboratories: U54 AI081680 and U54 AI057160, Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (MSD and MG); U19 AI083019 and R01 AI074973 (MSD and MG); NO1 AI50027 (JNZ and KF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Immune Defense
                Immunity to Infections
                Innate Immunity
                Immune Response
                Microbiology
                Immunity
                Innate Immunity
                Virology
                Animal Models of Infection
                Microbial Control
                Medicine
                Infectious Diseases
                Viral Diseases
                West Nile fever
                Infectious Disease Control

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article