37
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fungal-Induced Cell Cycle Impairment, Chromosome Instability and Apoptosis via Differential Activation of NF-κB

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis.

          Author Summary

          Cryptococcus neoformans, the only encapsulated pathogenic yeast, is responsible for severe opportunistic meningoencephalitis mostly in immunocompromised patients. It is a facultative intracellular pathogen and, as such, has the ability to survive intra- and extracellularly. Whereas interactions of C. neoformans with macrophages, especially its phagocytosis escape and intracellular survival, have been intensively studied, little is known about other schemes allowing extracellular survival of this yeast and restraint of host innate immune response. Here, we report that Cryptococcus neoformans compromised macrophage viability in two ways. Firstly, fungal infection elicited a strong decrease in macrophage proliferation in a capsule-independent fashion. This inhibition was subsequent to fungal-induced cell cycle disruption and chromosome aberrations (aneuploidy), a phenomenon commonly triggered by bacteria or viruses but for the first time described for a fungus. Secondly, this pathogen promoted apoptosis in a capsule-dependent manner. Our findings unravel a new process by which a fungal pathogen dampens the immune response using uncoupled activity of NF-κB (a key regulator of cell growth, apoptosis and inflammation) in fungal-induced apoptosis and inhibition of cell proliferation. This may have larger implications for human health, as animal models suggest that aneuploidy promotes tumourigenesis.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Mad2 overexpression promotes aneuploidy and tumorigenesis in mice.

          Mad2 is an essential component of the spindle checkpoint that blocks activation of Separase and dissolution of sister chromatids until microtubule attachment to kinetochores is complete. We show here that overexpression of Mad2 in transgenic mice leads to a wide variety of neoplasias, appearance of broken chromosomes, anaphase bridges, and whole-chromosome gains and losses, as well as acceleration of myc-induced lymphomagenesis. Moreover, continued overexpression of Mad2 is not required for tumor maintenance, unlike the majority of oncogenes studied to date. These results demonstrate that transient Mad2 overexpression and chromosome instability can be an important stimulus in the initiation and progression of different cancer subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitotic chromosomal instability and cancer: mouse modelling of the human disease.

            The stepwise progression from an early dysplastic lesion to full-blown metastatic malignancy is associated with increases in genomic instability. Mitotic chromosomal instability - the inability to faithfully segregate equal chromosome complements to two daughter cells during mitosis - is a widespread phenomenon in solid tumours that is thought to serve as the fuel for tumorigenic progression. How chromosome instability (CIN) arises in tumours and what consequences it has are still, however, hotly debated issues. Here we review the recent literature with an emphasis on models that recapitulate observations from human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells.

              The mitotic checkpoint protein hsMad2 is required to arrest cells in mitosis when chromosomes are unattached to the mitotic spindle. The presence of a single, lagging chromosome is sufficient to activate the checkpoint, producing a delay at the metaphase-anaphase transition until the last spindle attachment is made. Complete loss of the mitotic checkpoint results in embryonic lethality owing to chromosome mis-segregation in various organisms. Whether partial loss of checkpoint control leads to more subtle rates of chromosome instability compatible with cell viability remains unknown. Here we report that deletion of one MAD2 allele results in a defective mitotic checkpoint in both human cancer cells and murine primary embryonic fibroblasts. Checkpoint-defective cells show premature sister-chromatid separation in the presence of spindle inhibitors and an elevated rate of chromosome mis-segregation events in the absence of these agents. Furthermore, Mad2+/- mice develop lung tumours at high rates after long latencies, implicating defects in the mitotic checkpoint in tumorigenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2012
                March 2012
                1 March 2012
                : 8
                : 3
                : e1002555
                Affiliations
                [1 ]Institut Pasteur, Unité de Mycologie Moléculaire, Département Infection et Epidémiologie, Paris, France
                [2 ]CNRS, URA3012, Paris, France
                [3 ]Institut Pasteur, Unité d'Histopathologie, Département Infection et Epidémiologie, Paris, France
                [4 ]Institut Pasteur, Plateforme d'Imagerie Dynamique, Paris, France
                [5 ]Institut Pasteur, Unité des Aspergillus, Département de Parasitologie et Mycologie, Paris, France
                [6 ]Leibniz-Institute for Age Research - Fritz-Lipmann-Institute, Research Group Immunology, Jena, Germany
                University of Massachusetts Medical School, United States of America
                Author notes

                Conceived and designed the experiments: MBA SM. Performed the experiments: MBA ASL PA AL SM. Analyzed the data: MBA AL GJ SM. Contributed reagents/materials/analysis tools: FM FW GJ. Wrote the paper: SM.

                Article
                PPATHOGENS-D-11-02524
                10.1371/journal.ppat.1002555
                3291658
                22396644
                12249a3e-3f68-4013-aad8-d0918a3d0521
                Ben-Abdallah et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 November 2011
                : 12 January 2012
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Microbiology
                Immunity
                Mycology
                Molecular Cell Biology
                Chromosome Biology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article