25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of aging on medial olivocochlear system function

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is still controversy regarding the influence of aging on medial olivocochlear (MOC) system function. The main objective of this study is to measure age-related changes of MOC system function in people with normal hearing thresholds.

          Method

          Bilateral assessment of the MOC effect for click-evoked otoacoustic emissions (CEOAEs; at 70±3 dB peak sound pressure level [pSPL], click at 50/second, 260 repeats, 2.5–20 millisecond window) and for distortion product otoacoustic emissions (DPOAEs; with [frequencies] f 2/f 1=1.22, [levels of primary tones] L 1=65 dB SPL and L 2=55 dB SPL; DP-grams for 2f 1–f 2 were collected for the f 1 frequencies varying from 977 Hz to 5,164 kHz, with the resolution of four points per octave) was performed in a group of 146 (n=292 ears) healthy, right-handed subjects aged from 10–60 years with a bilateral hearing threshold from 0.25–4.0 kHz, not exceeding 20 dB hearing level; normal tympanograms; and a threshold of the contralateral stapedial reflex for broadband noise (BBN) of 75 dB SPL or higher. The MOC inhibition was assessed on the basis of changes in OAE level during BBN contralateral stimulation at 50 dB sensation level (mean, 65±3 dB SPL).

          Results

          Comparative analysis of the MOC effect for CEOAE and DPOAE showed the weakest effect in the oldest age group (41–60 years) at almost all tested frequencies. Moreover, a weak, albeit significant, positive correlation between the level of OAE and the size of the MOC effect was documented.

          Conclusion

          On the basis of our study, we have found a decrease in the strength of the MOC system with increasing age in normally hearing subjects, as reflected by a decrease of the OAE suppression effects in older individuals and an increase of the number of CEOAE and DPOAE enhancements during contralateral acoustic stimulation in the elderly, especially in the high-frequency range.

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.

          This review covers the basic anatomy and physiology of the olivocochlear reflexes and the use of otoacoustic emissions (OAEs) in humans to monitor the effects of one group, the medial olivocochlear (MOC) efferents. MOC fibers synapse on outer hair cells (OHCs), and activation of these fibers inhibits basilar membrane responses to low-level sounds. This MOC-induced decrease in the gain of the cochlear amplifier is reflected in changes in OAEs. Any OAE can be used to monitor MOC effects on the cochlear amplifier. Each OAE type has its own advantages and disadvantages. The most straightforward technique for monitoring MOC effects is to elicit MOC activity with an elicitor sound contralateral to the OAE test ear. MOC effects can also be monitored using an ipsilateral elicitor of MOC activity, but the ipsilateral elicitor brings additional problems caused by suppression and cochlear slow intrinsic effects. To measure MOC effects accurately, one must ensure that there are no middle-ear-muscle contractions. Although standard clinical middle-ear-muscle tests are not adequate for this, adequate tests can usually be done with OAE-measuring instruments. An additional complication is that most probe sounds also elicit MOC activity, although this does not prevent the probe from showing MOC effects elicited by contralateral sound. A variety of data indicate that MOC efferents help to reduce acoustic trauma and lessen the masking of transients by background noise; for instance, they aid in speech comprehension in noise. However, much remains to be learned about the role of efferents in auditory function. Monitoring MOC effects in humans using OAEs should continue to provide valuable insights into the role of MOC efferents and may also provide clinical benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speech recognition in noise and presbycusis: relations to possible neural mechanisms.

            This study is part of ongoing efforts to characterize and determine the neural bases of presbycusis. These efforts utilize humans and animals in sets of overlapping hypotheses and experiments. Here, 50 young adult and elderly subjects, with normal audiometric thresholds or high-frequency hearing loss, were presented three types of linguistic materials at suprathreshold levels to determine speech recognition performance in noise. The study sought to determine how peripheral and central auditory system dysfunctions might be implicated in the speech recognition problems of elderly humans. There were four main findings. (1) Peripheral auditory nervous system pathologies, manifested as reduced sensitivity for speech-frequency pure tones and speech materials, contribute to elevated speech reception thresholds in quiet, and to reduced speech recognition in noise. (2) Good cognitive ability was demonstrated in the old subjects who took advantage of supportive context as well or better than young subjects, strongly indicating that the cortical portions of the speech/language nervous system did not account for the speech understanding dysfunctions of the old subjects. (3) When audibility and cognitive functioning were not affected, the demonstrated speech-recognition in-noise dysfunction remained in old subjects. This implicates auditory brainstem or auditory cortex temporal-resolution dysfunctions in accounting for the observed differences in speech processing. (4) Performance differences between young and elderly subjects with elevated thresholds illustrate the effects of age plus hearing loss and thereby implicate both peripheral and central dysfunctions in presbycusics. This is because the differences in performance between young and elderly subjects with normal peripheral sensitivity identified a central auditory dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans.

              The CBA mouse shows little evidence of hearing loss until late in life, whereas the C57BL/6 strain develops a severe and progressive, high-frequency sensorineural hearing loss beginning around 3-6 months of age. These functional differences have been linked to genetic differences in the amount of hair cell loss as a function of age; however, a precise quantitative description of the sensory cell loss is unavailable. The present study provides mean values of inner hair cell (IHC) and outer hair cell (OHC) loss for CBA and C57BL/6 mice at 1, 3, 8, 18, and 26 months of age. CBA mice showed little evidence of hair cell loss until 18 months of age. At 26 months of age, OHC losses in the apex and base of the cochlea were approximately 65% and 50%, respectively, and IHC losses were approximately 25% and 35%. By contrast, C57BL/6 mice showed approximately a 75% OHC and a 55% IHC loss in the base of the cochlea at 3 months of age. OHC and IHC losses increased rapidly with age along a base-to-apex gradient. By 26 months of age, more than 80% of the OHCs were missing throughout the entire cochlea; however, IHC losses ranged from 100% near the base of the cochlea to approximately 20% in the apex.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                Clinical Interventions in Aging
                Clinical Interventions in Aging
                Dove Medical Press
                1176-9092
                1178-1998
                2014
                10 June 2014
                : 9
                : 901-914
                Affiliations
                Department of Otolaryngology, Medical University of Silesia, Zabrze, Poland
                Author notes
                Correspondence: Grażyna Lisowska, Department of Otolaryngology, Medical University of Silesia, ul Skłodowskiej-Curie 10, 41-800 Zabrze, Poland, Tel +48 32 271 7420, Fax +48 32 271 7420, Email grazyna.lisowska@ 123456onet.pl
                Article
                cia-9-901
                10.2147/CIA.S61934
                4061140
                24959071
                1226eb66-e3fe-4b62-a323-f84c4e839fc6
                © 2014 Lisowska et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Health & Social care
                contralateral suppression,efferent suppression,moc effect,moc inhibition,otoacoustic emissions,medial olivocochlear system,age

                Comments

                Comment on this article