46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ratiometric detection of pH fluctuation in mitochondria with a new fluorescein/cyanine hybrid sensor†

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The first small-molecular ratiometric pH sensor with mitochondria targeting ability was constructed. With this sensor, the stimulated pH m fluctuation in MCF-7 cells was monitored via both fluorescence confocal microscopy and flow cytometry.

          Abstract

          The homeostasis of mitochondrial pH (pH m) is crucial in cell physiology. Developing small-molecular fluorescent sensors for the ratiometric detection of pH m fluctuation is highly demanded yet challenging. A ratiometric pH sensor, Mito-pH, was constructed by integrating a pH-sensitive FITC fluorophore with a pH-insensitive hemicyanine group. The hemicyanine group also acts as the mitochondria targeting group due to its lipophilic cationic nature. Besides its ability to target mitochondria, this sensor provides two ratiometric pH sensing modes, the dual excitation/dual emission mode (D ex/D em) and dual excitation (D ex) mode, and its linear and reversible ratiometric response range from pH 6.15 to 8.38 makes this sensor suitable for the practical tracking of pH m fluctuation in live cells. With this sensor, stimulated pH m fluctuation has been successfully tracked in a ratiometric manner via both fluorescence imaging and flow cytometry.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Sensors and regulators of intracellular pH.

          Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting mitochondria.

            Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are closely linked to degenerative diseases such as Alzheimer's disease, Parkinson's, neuronal death including ischemic and hemorrhagic stroke, acute and chronic degenerative cardiac myocyte death, and cancer. As a byproduct of oxidative phosphorylation, a steady stream of reactive species emerge from our cellular energy plants, the mitochondria. ROS and RNS potentially cause damage to all cellular components. Structure alteration, biomolecule fragmentation, and oxidation of side chains are trade-offs of cellular energy production. ROS and RNS escape results in the activation of cytosolic stress pathways, DNA damage, and the upregulation of JNK, p38, and p53. Incomplete scavenging of ROS and RNS particularly affects the mitochondrial lipid cardiolipin (CL), triggers the release of mitochondrial cytochrome c, and activates the intrinsic death pathway. Due to the active redox environment and the excess of NADH and ATP at the inner mitochondrial membrane, a broad range of agents including electron acceptors, electron donors, and hydride acceptors can be used to influence the biochemical pathways. The key to therapeutic value is to enrich selective redox modulators at the target sites. Our approach is based on conjugating nitroxides to segments of natural products with relatively high affinity for mitochondrial membranes. For example, a modified gramicidin S segment was successfully used for this purpose and proven to be effective in preventing superoxide production in cells and CL oxidation in mitochondria and in protecting cells against a range of pro-apoptotic triggers such as actinomycin D, radiation, and staurosporine. More importantly, these mitochondria-targeted nitroxide/gramicidin conjugates were able to protect against apoptosis in vivo by preventing CL oxidation induced by intestinal hemorrhagic shock. Optimization of nitroxide carriers could lead to a new generation of effective antiapoptotic agents acting at an early mitochondrial stage. Alternative chemistry-based approaches to targeting mitochondria include the use of proteins and peptides, as well as the attachment of payloads to lipophilic cationic compounds, sulfonylureas, anthracyclines, and other agents with proven or hypothetical affinities for mitochondria. Manganese superoxide dismutase (MnSOD), SS tetrapeptides with 2',6'-dimethyltyrosine (Dmt) residues, rhodamine, triphenylphosphonium salts, nonopioid analgesics, adriamycin, and diverse electron-rich aromatics and stilbenes were used to influence mitochondrial biochemistry and the biology of aging. Some general structural principles for effective therapeutic agents are now emerging. Among these are the presence of basic or positively charged functional groups, hydrophobic substructures, and, most promising for future selective strategies, classes of compounds that are actively shuttled into mitochondria, bind to mitochondria-specific proteins, or show preferential affinity to mitochondria-specific lipids.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.

                Bookmark

                Author and article information

                Journal
                Chem Sci
                Chem Sci
                Chemical Science
                Royal Society of Chemistry
                2041-6520
                2041-6539
                1 May 2015
                16 March 2015
                : 6
                : 5
                : 3187-3194
                Affiliations
                [a ] State Key Laboratory of Coordination Chemistry , Coordination Chemistry Institute , School of Chemistry and Chemical Engineering , Nanjing University , Hankou Road No.22 , Nanjing 210093 , PR China . Email: heweij69@ 123456nju.edu.cn ; Email: zguo@ 123456nju.edu.cn ; Fax: +86-25-83314502 ; Tel: +86-25-83597066
                Article
                c4sc04021j
                10.1039/c4sc04021j
                5490428
                28706690
                12474fff-d08d-444e-a839-a4830395ba78
                This journal is © The Royal Society of Chemistry 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 December 2014
                : 16 March 2015
                Categories
                Chemistry

                Notes

                †Electronic supplementary information (ESI) available: Characterization of Mito-pH, emission spectra and photograph of Mito-pH solutions, linear fitting of the ratiometric response, and co-localization images at pH 8.50. See DOI: 10.1039/c4sc04021j


                Comments

                Comment on this article