51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pediatric dental sedation: challenges and opportunities

      review-article
      ,
      Clinical, Cosmetic and Investigational Dentistry
      Dove Medical Press
      conscious sedation, anesthesia, general, pediatrics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High levels of dental caries, challenging child behavior, and parent expectations support a need for sedation in pediatric dentistry. This paper reviews modern developments in pediatric sedation with a focus on implementing techniques to enhance success and patient safety. In recent years, sedation for dental procedures has been implicated in a disproportionate number of cases that resulted in death or permanent neurologic damage. The youngest children and those with more complicated medical backgrounds appear to be at greatest risk. To reduce complications, practitioners and regulatory bodies have supported a renewed focus on health care quality and safety. Implementation of high fidelity simulation training and improvements in patient monitoring, including end-tidal carbon dioxide, are becoming recognized as a new standard for sedated patients in dental offices and health care facilities. Safe and appropriate case selection and appropriate dosing for overweight children is also paramount. Oral sedation has been the mainstay of pediatric dental sedation; however, today practitioners are administering modern drugs in new ways with high levels of success. Employing contemporary transmucosal administration devices increases patient acceptance and sedation predictability. While recently there have been many positive developments in sedation technology, it is now thought that medications used in sedation and anesthesia may have adverse effects on the developing brain. The evidence for this is not definitive, but we suggest that practitioners recognize this developing area and counsel patients accordingly. Finally, there is a clear trend of increased use of ambulatory anesthesia services for pediatric dentistry. Today, parents and practitioners have become accustomed to children receiving general anesthesia in the outpatient setting. As a result of these changes, it is possible that dental providers will abandon the practice of personally administering large amounts of sedation to patients, and focus instead on careful case selection for lighter in-office sedation techniques.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Cognitive and behavioral outcomes after early exposure to anesthesia and surgery.

          Annually, millions of children are exposed to anesthetic agents that cause apoptotic neurodegeneration in immature animals. To explore the possible significance of these findings in children, we investigated the association between exposure to anesthesia and subsequent (1) learning disabilities (LDs), (2) receipt of an individualized education program for an emotional/behavior disorder (IEP-EBD), and (3) scores of group-administered achievement tests. This was a matched cohort study in which children (N = 8548) born between January 1, 1976, and December 31, 1982, in Rochester, Minnesota, were the source of cases and controls. Those exposed to anesthesia (n = 350) before the age of 2 were matched to unexposed controls (n = 700) on the basis of known risk factors for LDs. Multivariable analysis adjusted for the burden of illness, and outcomes including LDs, receipt of an IEP-EBD, and the results of group-administered tests of cognition and achievement were outcomes. Exposure to multiple, but not single, anesthetic/surgery significantly increased the risk of developing LDs (hazard ratio: 2.12 [95% confidence interval: 1.26-3.54]), even when accounting for health status. A similar pattern was observed for decrements in group-administered tests of achievement and cognition. However, exposure did not affect the rate of children receiving an individualized education program. Repeated exposure to anesthesia and surgery before the age of 2 was a significant independent risk factor for the later development of LDs but not the need for educational interventions related to emotion/behavior. We cannot exclude the possibility that multiple exposures to anesthesia/surgery at an early age may adversely affect human neurodevelopment with lasting consequence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits.

            Recently it was demonstrated that exposure of the developing brain during the period of synaptogenesis to drugs that block NMDA glutamate receptors or drugs that potentiate GABA(A) receptors can trigger widespread apoptotic neurodegeneration. All currently used general anesthetic agents have either NMDA receptor-blocking or GABA(A) receptor-enhancing properties. To induce or maintain a surgical plane of anesthesia, it is common practice in pediatric or obstetrical medicine to use agents from these two classes in combination. Therefore, the question arises whether this practice entails significant risk of inducing apoptotic neurodegeneration in the developing human brain. To begin to address this problem, we have administered to 7-d-old infant rats a combination of drugs commonly used in pediatric anesthesia (midazolam, nitrous oxide, and isoflurane) in doses sufficient to maintain a surgical plane of anesthesia for 6 hr, and have observed that this causes widespread apoptotic neurodegeneration in the developing brain, deficits in hippocampal synaptic function, and persistent memory/learning impairments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain.

              Brief isoflurane anesthesia induces neuroapoptosis in the developing rodent brain, but susceptibility of non-human primates to the apoptogenic action of isoflurane has not been studied. Therefore, we exposed postnatal day 6 (P6) rhesus macaques to a surgical plane of isoflurane anesthesia for 5 h, and studied the brains 3 h later for histopathologic changes. With the same intensity of physiologic monitoring typical for human neonatal anesthesia, five P6 rhesus macaques were exposed for 5 h to isoflurane maintained between 0.7 and 1.5 end-tidal Vol% (endotracheally intubated and mechanically ventilated) and five controls were exposed for 5 h to room air without further intervention. Three hours later, the brains were harvested and serially sectioned across the entire forebrain and midbrain, and stained immunohistochemically with antibodies to activated caspase-3 for detection and quantification of apoptotic neurons. Quantitative evaluation of brain sections revealed a median of 32.5 (range, 18.0-48.2) apoptotic cells/mm of brain tissue in the isoflurane group and only 2.5 (range, 1.1-5.2) in the control group (difference significant at P = 0.008). Apoptotic neuronal profiles were largely confined to the cerebral cortex. In the control brains, they were sparse and randomly distributed, whereas in the isoflurane brains they were abundant and preferentially concentrated in specific cortical layers and regions. The developing non-human primate brain is sensitive to the apoptogenic action of isoflurane and displays a 13-fold increase in neuroapoptosis after 5 h exposure to a surgical plane of isoflurane anesthesia.
                Bookmark

                Author and article information

                Journal
                Clin Cosmet Investig Dent
                Clin Cosmet Investig Dent
                Clinical, Cosmetic and Investigational Dentistry
                Clinical, Cosmetic and Investigational Dentistry
                Dove Medical Press
                1179-1357
                2015
                26 August 2015
                : 7
                : 97-106
                Affiliations
                Department of Pediatric Dentistry, University of Washington, Seattle, WA, USA
                Author notes
                Correspondence: Travis M Nelson, Department of Pediatric Dentistry, University of Washington, 6222 NE 74th Street, Seattle, WA 98115, USA, Email tmnelson@ 123456uw.edu
                Article
                ccide-7-097
                10.2147/CCIDE.S64250
                4555969
                26345425
                12481f4a-7df4-4d43-a75c-07c00c764411
                © 2015 Nelson and Xu. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                conscious sedation,anesthesia,general,pediatrics
                conscious sedation, anesthesia, general, pediatrics

                Comments

                Comment on this article