Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oscillatory dynamics of cortical functional connections in semantic prediction

      1 , 1 , 2 , 3 , 4

      Human Brain Mapping

      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 101

          • Record: found
          • Abstract: not found
          • Article: not found

          The assessment and analysis of handedness: The Edinburgh inventory

           R.C. Oldfield (1971)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonparametric statistical testing of EEG- and MEG-data.

            In this paper, we show how ElectroEncephaloGraphic (EEG) and MagnetoEncephaloGraphic (MEG) data can be analyzed statistically using nonparametric techniques. Nonparametric statistical tests offer complete freedom to the user with respect to the test statistic by means of which the experimental conditions are compared. This freedom provides a straightforward way to solve the multiple comparisons problem (MCP) and it allows to incorporate biophysically motivated constraints in the test statistic, which may drastically increase the sensitivity of the statistical test. The paper is written for two audiences: (1) empirical neuroscientists looking for the most appropriate data analysis method, and (2) methodologists interested in the theoretical concepts behind nonparametric statistical tests. For the empirical neuroscientist, a large part of the paper is written in a tutorial-like fashion, enabling neuroscientists to construct their own statistical test, maximizing the sensitivity to the expected effect. And for the methodologist, it is explained why the nonparametric test is formally correct. This means that we formulate a null hypothesis (identical probability distribution in the different experimental conditions) and show that the nonparametric test controls the false alarm rate under this null hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.

              The surface of the human cerebral cortex is a highly folded sheet with the majority of its surface area buried within folds. As such, it is a difficult domain for computational as well as visualization purposes. We have therefore designed a set of procedures for modifying the representation of the cortical surface to (i) inflate it so that activity buried inside sulci may be visualized, (ii) cut and flatten an entire hemisphere, and (iii) transform a hemisphere into a simple parameterizable surface such as a sphere for the purpose of establishing a surface-based coordinate system. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                Human Brain Mapping
                Hum Brain Mapp
                Wiley
                1065-9471
                1097-0193
                November 26 2018
                April 15 2019
                December 07 2018
                April 15 2019
                : 40
                : 6
                : 1856-1866
                Affiliations
                [1 ]Department of RadiologyMassachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School Boston Massachusetts
                [2 ]Department of PsychologyUniversity of Lübeck Lübeck Germany
                [3 ]Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
                [4 ]MEG and Cortical Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
                Article
                10.1002/hbm.24495
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article