23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twenty-three cats with spontaneous feline infectious peritonitis (FIP) were examined by light microscopy including immunohistology and histochemistry in order to determine the cellular composition and the expression of viral antigen in lesions in FIP. Furthermore, the presence of plasma-cells producing coronavirus-specific antibodies was evaluated in situ. Macrophages and neutrophils were demonstrated by an antibody against calprotectin (leukocyte protein L1, myeloid/histiocyte antigen), neutrophils were recognized due to their chloroacetate esterase activity, and B- and T-lymphocytes were identified by antibodies against the CD3 antigen and the CD45R antigen, respectively. Expression of viral antigen was immunohistologically demonstrated by a monoclonal antibody (mAb) against coronavirus while coronavirus-specific antibodies in situ were identified by the application of feline coronavirus prior to the coronavirus antibody. Lesions were classified as diffuse alterations at serosal surfaces, granulomas with areas of necrosis, granulomas without extended necrosis, focal and perivascular lymphoplasmocytic infiltrates, and granulomatous-necrotizing vasculitis. Diffuse alterations on serosal surfaces were represented either by activated mesothelial cells with single coronavirus antigen-bearing macrophages or by layers of precipitated exudate containing single to numerous granulomas with areas of necrosis. In liver and spleen, the exudate was often underlaid by a small band of subcapsular B-cells with an occasional plasma-cell producing coronavirus-specific antibodies. In other locations, a variably broad band of B-cells and plasma-cells, often infiltrating between underlying muscle fibers, separated the exudate from the unaltered tissue. Some of these plasma-cells were positive for coronavirus-specific antibodies. In granulomas with areas of necrosis, the central necrosis was surrounded by macrophages usually expressing considerable amounts of viral antigen. Few B-cells and plasma-cells were found in the periphery. In granulomas without extended necrosis, the number of macrophages were lower. Only few macrophages expressing low amounts of viral antigen were present. B-cells and plasma-cells formed a broad rim. Few plasma-cells stained positive for coronavirus-specific antibodies. In both types of granulomas, few neutrophils were found between macrophages. Few T-cells were seen scattered throughout the lesions. Focal and perivascular lymphoplasmocytic infiltrates were mainly seen in omentum and leptomeninx. B-cells were the predominant cells; some plasma-cells were positive for coronavirus-specific antibodies. Viral antigen was not readily detected in these alterations. Granulomatous-necrotizing vasculitis was occasionally found in kidneys and leptomeninx. It was dominated by macrophages which often stained strongly positive for coronavirus antigen. Different types of alteration were often seen in the same animal and even the same tissue. There was no obvious correlation between the cat's age, gross pathological changes, and the histological types of alteration. Single plasma-cells positive for coronavirus-specific antibodies were found around blood vessels distant from inflammatory alterations, within the lung parenchyma, as infiltrating cells in the mucosa of the small intestine, and in spleen and mesenteric lymph node. Results show that alterations in FIP are heterogeneous concerning cellular composition and expression of viral antigen. The dominance of B-cells in part of the lesions together with the presence of plasma-cells positive for coronavirus-specific antibodies indicate that these cells may play a role in the maintenance of inflammatory processes in FIP.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.

          The use of avidin-biotin interaction in immunoenzymatic techniques provides a simple and sensitive method to localize antigens in formalin-fixed tissues. Among the several staining procedures available, the ABC method, which involves an application of biotin-labeled secondary antibody followed by the addition of avidin-biotin-peroxidase complex, gives a superior result when compared to the unlabeled antibody method. The availability of biotin-binding sites in the complex is created by the incubation of a relative excess of avidin with biotin-labeled peroxidase. During formation of the complex, avidin acts as a bridge between biotin-labeled peroxidase molecules; and biotin-labeled peroxidase molecules, which contains several biotin moieties, serve as a link between the avidin molecules. Consequently, a "lattice" complex containing several peroxidase molecules is likely formed. Binding of this complex to the biotin moieties associated with secondary antibody results in a high staining intensity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The biology of interleukin-6.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virologic and immunologic aspects of feline infectious peritonitis virus infection.

              A number of feline coronavirus isolates have been characterized over the last few years. These isolates consist of what we have referred to as feline enteric coronaviruses (FECVs) and feline infectious peritonitis viruses (FIPVs). FECVs cause a transient enteritis in kittens but no systemic illness. FIPVs, in contrast, cause a systemic and usually fatal disease syndrome characterized either by an exudative serositis or a disseminated granulomatous disease. Although the diseases they cause are quite different, FECVs and FIPVs are antigenically and morphologically indistinguishable from each other. FECVs have a strict tropism for mature intestinal epithelial cells and do not appear to replicate in macrophages. In contrast, FIPVs, appear to spread rapidly from the intestinal mucosa and replicate in macrophages. Experiments will be presented, and literature cited, that will allow us to make the following assumptions about the pathogenesis of FIPV infection: 1) FIPVs and FECVs represent a spectrum of viruses that differ only in infectivity (ability to evoke seroconversion following oral infection) and virulence (ability to cause FIP), 2) field isolates are generally nearer to FECVs in behavior than laboratory isolates made from animal passaged material, 3) immunity to FIPV appears to be of the premunition type and is maintained for as long as the infection persists in a reactivatable form, 4) strains of feline coronaviruses that do not cause systemic disease, such as FECVs or low virulence FIPVs, can actually sensitize cats to infection with virulent FIPV strains, 5) FeLV infection interferes with established FIP immunity and allows for the reactivation of disease in healthy carriers, 6) FIPV may be passaged from queen to kitten either in utero or during neonatal life, and 7) kittens infected by their mothers with FIPV do not usually develop FIP but become immune carriers of the virus for a period of 5-6 months; recovery from the carrier state is associated with a loss of premunition immunity.
                Bookmark

                Author and article information

                Journal
                Vet Immunol Immunopathol
                Vet. Immunol. Immunopathol
                Veterinary Immunology and Immunopathology
                Elsevier Science B.V.
                0165-2427
                1873-2534
                3 December 1998
                23 October 1998
                3 December 1998
                : 65
                : 2
                : 243-257
                Affiliations
                 Institut für Veterinär-Pathologie, Universität Leipzig, Margarete Blank Strasse 404103 LeipzigGermany
                Author notes
                [* ]Corresponding author. Tel. +49 341 9738278; fax: +49 341 9738299; e-mail: kipar@rz.uni-leipzig.de
                Article
                S0165-2427(98)00158-5
                10.1016/S0165-2427(98)00158-5
                7119884
                9839877
                124a3b4d-7469-43ca-a558-42d6826a064e
                Copyright © 1998 Elsevier Science B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Veterinary medicine
                feline infectious peritonitis,immunohistology,coronavirus antigen,coronavirus-specific antibodies,b-cells,plasma-cells

                Comments

                Comment on this article