7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain.

      Febs Letters
      Animals, CDC2 Protein Kinase, metabolism, Calcium-Calmodulin-Dependent Protein Kinases, Cyclin-Dependent Kinase 5, Cyclin-Dependent Kinases, Enzyme Inhibitors, pharmacology, Female, Glycogen Synthase Kinase 3, Glycogen Synthase Kinases, Okadaic Acid, Oxazoles, Phosphoprotein Phosphatases, antagonists & inhibitors, Phosphorylation, Prosencephalon, enzymology, Protein Phosphatase 2, Rats, Rats, Wistar, tau Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Alzheimer disease brain the activities of protein phosphatase (PP)-2A and PP-1 are decreased and the microtubule-associated protein tau is abnormally hyperphosphorylated at several sites at serine/threonine. Employing rat forebrain slices kept metabolically active in oxygenated artificial CSF as a model system, we investigated the role of PP-2A/PP-1 in the regulation of some of the major abnormally hyperphosphorylated sites of tau and the protein kinases involved. Treatment of the brain slices with 1.0 microM okadaic acid inhibited approximately 65% of PP-2A and produced hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422. No significant changes in the activities of glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinases cdk5 and cdc2 were observed. Calyculin A (0.1 microM) inhibited approximately 50% PP-1, approximately 20% PP-2A, 50% GSK-3 and approximately 30% cdk5 but neither inhibited the activity of cyclin AMP dependent protein kinase A (PKA) nor resulted in the hyperphosphorylation of tau at any of the above sites. Treatment of brain slices with 1 microM okadaic acid plus 0.1 microM calyculin A inhibited approximately 100% of both PP-2A and PP-1, approximately 80% of GSK-3, approximately 50% of cdk5 and approximately 30% of cdc2 but neither inhibited PKA nor resulted in the hyperphosphorylation of tau at any of the above sites. These studies suggest (i) that PP-1 upregulates the phosphorylation of tau at Ser 198/199/202 and Ser 396/404 indirectly by regulating the activities of GSK-3, cdk5 and cdc2 whereas PP-2A regulates the phosphorylation of tau directly by dephosphorylation at the above sites, and (ii) that a decrease in the PP-2A activity leads to abnormal hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422.

          Related collections

          Author and article information

          Comments

          Comment on this article