198
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Navigating the massive world of reddit: using backbone networks to map user interests in social media

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the massive online worlds of social media, users frequently rely on organizing themselves around specific topics of interest to find and engage with like-minded people. However, navigating these massive worlds and finding topics of specific interest often proves difficult because the worlds are mostly organized haphazardly, leaving users to find relevant interests by word of mouth or using a basic search feature. Here, we report on a method using the backbone of a network to create a map of the primary topics of interest in any social network. To demonstrate the method, we build an interest map for the social news web site reddit and show how such a map could be used to navigate a social media world. Moreover, we analyze the network properties of the reddit social network and find that it has a scale-free, small-world, and modular community structure, much like other online social networks such as Facebook and Twitter. We suggest that the integration of interest maps into popular social media platforms will assist users in organizing themselves into more specific interest groups, which will help alleviate the overcrowding effect often observed in large online communities.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical mechanics of complex networks

            Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Community detection in graphs

              The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                peerj-cs
                PeerJ Computer Science
                PeerJ Comput. Sci.
                PeerJ Inc. (San Francisco, USA )
                2376-5992
                27 May 2015
                : 1
                Affiliations
                [1 ]Department of Computer Science and Engineering, Michigan State University , East Lansing, MI, USA
                [2 ]Department of Psychology, Michigan State University , East Lansing, MI, USA
                Article
                cs-4
                10.7717/peerj-cs.4
                © 2015 Olson and Neal

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                Product
                Self URI (journal-page): https://peerj.com/computer-science/
                Funding
                The authors declare there was no funding for this work.
                Categories
                Network Science and Online Social Networks
                Visual Analytics

                Comments

                Comment on this article