+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Case Report: Hypergranular Platelets in Vaccine-Induced Thrombotic Thrombocytopenia After ChAdOx1 nCov-19 Vaccination


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Vaccine-induced thrombotic thrombocytopenia (VITT) post SARS-CoV-2 vaccination is characterized by thrombocytopenia and severe thrombosis. Platelet function during patient recovery in the medium-/long-term has not been investigated fully. Here, we undertook a 3-month study, assessing the recovery of a VITT patient and assessing platelet morphology, granule content and dense-granule release at two distinct time points during recovery.

          Case Presentation

          A 61 year-old female was admitted to hospital 15 days post ChAdOx1 nCov-19 vaccination. Hematological parameters and peripheral blood smears were monitored over 3 months. Platelet morphology and granule populations were assessed using transmission electron microscopy (TEM) at two distinct time points during recovery, as was agonist-induced platelet dense-granule release. Upon admission, the patient had reduced platelet counts, increased D-dimer and high anti-PF4 antibodies with multiple sites of cerebral venous sinus thrombosis (CVST). Peripheral blood smears revealed the presence of large, hypergranular platelets. Following treatment, hematological parameters returned to normal ranges over the study period. Anti-PF4 antibodies remained persistently high up to 90 days post-admission. Two days after admission, VITT platelets contained more granules per-platelet when compared to day 72 and healthy platelets. Additionally, maximal ATP release (marker of dense-granule release) was increased on day 2 compared to day 72 and healthy control platelets.


          This study highlights a previously unreported observation of platelet hypergranularity in VITT which may contribute to the thrombotic risk associated with VITT. Optimal approaches to monitoring recovery from VITT over time remains to be determined but our findings may help inform therapeutic decisions relating to anticoagulation treatment in this novel pathology.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial

          Summary Background The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. Methods We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18–55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. Findings Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493–1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96–317; n=127), and were boosted following a second dose (639 EU, 360–792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R 2=0·67 by Marburg VN; p<0·001). Interpretation ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. Funding UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.
            • Record: found
            • Abstract: found
            • Article: not found

            Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination

            Background Several cases of unusual thrombotic events and thrombocytopenia have developed after vaccination with the recombinant adenoviral vector encoding the spike protein antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (ChAdOx1 nCov-19, AstraZeneca). More data were needed on the pathogenesis of this unusual clotting disorder. Methods We assessed the clinical and laboratory features of 11 patients in Germany and Austria in whom thrombosis or thrombocytopenia had developed after vaccination with ChAdOx1 nCov-19. We used a standard enzyme-linked immunosorbent assay to detect platelet factor 4 (PF4)–heparin antibodies and a modified (PF4-enhanced) platelet-activation test to detect platelet-activating antibodies under various reaction conditions. Included in this testing were samples from patients who had blood samples referred for investigation of vaccine-associated thrombotic events, with 28 testing positive on a screening PF4–heparin immunoassay. Results Of the 11 original patients, 9 were women, with a median age of 36 years (range, 22 to 49). Beginning 5 to 16 days after vaccination, the patients presented with one or more thrombotic events, with the exception of 1 patient, who presented with fatal intracranial hemorrhage. Of the patients with one or more thrombotic events, 9 had cerebral venous thrombosis, 3 had splanchnic-vein thrombosis, 3 had pulmonary embolism, and 4 had other thromboses; of these patients, 6 died. Five patients had disseminated intravascular coagulation. None of the patients had received heparin before symptom onset. All 28 patients who tested positive for antibodies against PF4–heparin tested positive on the platelet-activation assay in the presence of PF4 independent of heparin. Platelet activation was inhibited by high levels of heparin, Fc receptor–blocking monoclonal antibody, and immune globulin (10 mg per milliliter). Additional studies with PF4 or PF4–heparin affinity purified antibodies in 2 patients confirmed PF4-dependent platelet activation. Conclusions Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia. (Funded by the German Research Foundation.)
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination

              We report findings in five patients who presented with venous thrombosis and thrombocytopenia 7 to 10 days after receiving the first dose of the ChAdOx1 nCoV-19 adenoviral vector vaccine against coronavirus disease 2019 (Covid-19). The patients were health care workers who were 32 to 54 years of age. All the patients had high levels of antibodies to platelet factor 4–polyanion complexes; however, they had had no previous exposure to heparin. Because the five cases occurred in a population of more than 130,000 vaccinated persons, we propose that they represent a rare vaccine-related variant of spontaneous heparin-induced thrombocytopenia that we refer to as vaccine-induced immune thrombotic thrombocytopenia.

                Author and article information

                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                09 February 2022
                09 February 2022
                : 9
                [1] 1Conway SPHERE Research Group, Conway Institute, University College Dublin , Dublin, Ireland
                [2] 2School of Biomolecular and Biomedical Science, University College Dublin , Dublin, Ireland
                [3] 3Department of Haematology, Mater Misericordiae University Hospital , Dublin, Ireland
                [4] 4School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland , Dublin, Ireland
                [5] 5Tallaght University Hospital , Dublin, Ireland
                [6] 6Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland
                [7] 7Department of Paediatrics, Royal College of Surgeons in Ireland , Dublin, Ireland
                [8] 8School of Medicine, University College Dublin , Dublin, Ireland
                [9] 9UCD Institute for Discovery, University College Dublin , Dublin, Ireland
                [10] 10Department of Haematology, Rotunda Hospital , Dublin, Ireland
                Author notes

                Edited by: Philipp von Hundelshausen, Ludwig Maximilian University of Munich, Germany

                Reviewed by: Brian Storrie, University of Arkansas for Medical Sciences, United States; William Gunning, University of Toledo Medical Center, United States

                *Correspondence: Fionnuala Ní Áinle fniainle@ 123456mater.ie

                This article was submitted to Cardiovascular Biologics and Regenerative Medicine, a section of the journal Frontiers in Cardiovascular Medicine

                Copyright © 2022 Comer, Le Chevillier, Szklanna, Kelliher, Saeed, Cullen, Edebiri, O'Neill, Stephens, Weiss, Murphy, Rajakumar, Tierney, Hughes, Lennon, Moran, Maguire, Ní Áinle and Kevane.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 23, Pages: 7, Words: 5150
                Funded by: Science Foundation Ireland, doi 10.13039/501100001602;
                Cardiovascular Medicine
                Case Report

                platelets,thrombosis,thrombocytopenia,chadox1 ncov-19 vaccination,vaccine-induced thrombotic thrombocytopenia (vitt)


                Comment on this article