+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This work aimed to design, develop, and characterize a lipid nanocarrier system for the selective delivery of rifabutin (RFB) to alveolar macrophages. Lipid nanoparticles, specifically nanostructured lipid carriers (NLC), were synthetized by the high-shear homogenization and ultrasonication techniques. These nanoparticles were designed to exhibit both passive and active targeting strategies to be efficiently internalized by the alveolar macrophages, traffic to the acidified phagosomes and phagolysosomes, and release bactericidal concentrations of the antituberculosis drug intracellularly. NLC that could entrap RFB were prepared, characterized, and further functionalized with mannose. Particles’ diameter, zeta potential, morphology, drug% entrapping efficiency, and drug release kinetics were evaluated. The mannose coating process was confirmed by Fourier transform infrared. Further, the cytotoxicity of the formulations was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay in A549, Calu-3, and Raw 264.7 cells. The diameter of NLC formulations was found to be in the range of 175–213 nm, and drug entrapping efficiency was found to be above 80%. In addition, high storage stability for the formulations was expected since they maintained the initial characteristics for 6 months. Moreover, the drug release was pH-sensitive, with a faster drug release at acidic pH than at neutral pH. These results pose a strong argument that the developed nanocarrier can be explored as a promising carrier for safer and more efficient management of tuberculosis by exploiting the pulmonary route of administration.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          Fourier transform infrared spectroscopic analysis of protein secondary structures.

           Jilie Kong,  S. S. Yu (2007)
          Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.
            • Record: found
            • Abstract: not found
            • Article: not found

            Global Tuberculosis Report, 2015

              • Record: found
              • Abstract: found
              • Article: not found

              Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future.

              An increasing number of newly developed drugs are poorly soluble; in many cases drugs are poorly soluble in both aqueous and organic media excluding the traditional approaches of overcoming such solubility factors and resulting in bioavailability problems. An alternative and promising approach is the production of drug nanoparticles (i.e. nanosuspensions) to overcome these problems. The major advantages of this technology are its general applicability to most drugs and its simplicity. In this article, the production of nanoparticles on a laboratory scale is presented, special features such as increased saturation solubility and dissolution velocity are discussed, and special applications are highlighted, for example, mucoadhesive nanosuspensions for oral delivery and surface-modified drug nanoparticles for site-specific delivery to the brain. The possibilities of large scale production -- the prerequisite for the introduction of a delivery system to the market -- are also discussed.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                02 August 2016
                : 10
                : 2467-2475
                [1 ]IUCIBIO, REQUIMTE, Chemistry Department, Faculty of Pharmacy
                [2 ]Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
                Author notes
                Correspondence: Salette Reis, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge, Viterbo Ferreira no 228, Porto 4050-313, Portugal, Email shreis@ 123456ff.up.pt

                These authors contributed equally to this work

                © 2016 Pinheiro et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article