11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological Evaluation of Aldehydic-Pyrrolidinedione Against HCT-116, MDA-MB231, NIH/3T3, MCF-7 Cancer Cell Lines, Antioxidant and Enzyme Inhibition Studies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The current work was designed to synthesize a bioactive derivative of succinimide and evaluate it for anti-Alzheimer, anticancer and anti-diabetic potentials.

          Methods

          The compound was synthesized by Michael addition of butyraldehyde with N-phenylmaleimide. The synthesized compound was screened for biological potentials including anti-cholinesterase, in-vitro anti-diabetic, antioxidant and anthelmintic potentials. The anti-cholinesterase potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), anti-diabetic potential against α-glucosidase, antioxidant potential against ABTS, DPPH and H 2O 2 and anthelmintic potential against Perethima posthuma and Ascaridia galli respectively.

          Results

          The compound demonstrated significant AChE and BChE inhibition i.e., 71.34±1.92 and 73.42 ±1.92 at the concentration of 1000 µg/mL respectively. Other dilutions exhibited concentration-dependent inhibitory activity against both enzymes. In the MTT assay, the newly synthesized compound was found active against all of the cell lines viz, HCT-116, MDA-MB231, NIH/3T3 and MCF-7 and the highest cytotoxicity potential was observed against the colon cancer cell line (HCT-116) with an IC 50 value of 78 µg/mL exhibiting its highest potential. Moreover, the compound exhibited prominent α-glucosidase inhibitory potentials (79.86±2.54% at 1000 µg/mL) with IC 50 value of 156.23 µg/mL. Further, our test compound exhibited considerable scavenging activity against DPPH, ABTS and H 2O 2 free radicals with percent inhibitions of 75.84±1.58, 72.85±1.17 and 54.82±1.82 and IC 50 values of 84.36, 139.74 and 752.21 µg/mL respectively. Our test sample exhibited significant anthelmintic potentials. It demonstrated significant paralysis and death of the test worms in an unbelievably short time in comparison with albendazole.

          Conclusion

          Going into the detail of all observations, it may be deduced that the newly synthesized succinimide derivative could be an important drug candidate against neurodegenerative disorders like Alzheimer’s disease, cancer, diabetes mellitus and worms. Further detailed studies in animal models are required for in-vivo analysis of the compound.

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L

          Background We investigated Polygonum hydropiper L. (P. hydropiper) for phenolic contents, antioxidant, anticholinesterase activities, in an attempt to rationalize its use in neurological disorders. Methods Plant crude extract (Ph.Cr), its subsequent fractions: n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were evaluated for 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) free radical scavenging potential. Further, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman's assay. Moreover, total phenolic contents of plant extracts were determined and expressed in mg of gallic acid equivalent per gram of dry sample (mg GAE/g dry weight). Results Among different fractions, Ph.Cr (90.82), Ph.Chf (178.16), Ph.EtAc (203.44) and Ph.Bt (153.61) exhibited high phenolic contents. All fractions showed concentration dependent DPPH scavenging activity, with Ph.EtAc 71.33% (IC50 15 μg/ml), Ph.Bt 71.40% (IC50 3 μg/ml) and Ph.Sp 71.40% (IC50 35 μg/ml) were most potent. The plant extracts exhibited high ABTS scavenging ability i.e. Ph.Bt (91.03%), Ph.EtAc (90.56%), Ph.Sp (90.84%), Ph.Aq (90.56%) with IC50 < 0.01 μg/ml. All fractions showed moderate to high AChE inhibitory activity as; Ph.Cr, 86.87% (IC50 330 μg/ml), Ph.Hex, 87.49% (IC50 35 μg/ml), Ph.Chf, 84.76% (IC50 55 μg/ml), Ph.Sp, 87.58% (IC50 108 μg/ml) and Ph.EtAc 79.95% (IC50 310 μg/ml) at 1 mg/ml). Furthermore the BChE inhibitory activity was most prominent in Ph.Hex 90.30% (IC50 40 μg/ml), Ph.Chf 85.94% (IC50 215 μg/ml), Ph.Aq 87.62% (IC50 3 μg/ml) and Ph.EtAc 81.01% (IC50 395 μg/ml) fractions. Conclusions In this study, for the first time, we determined phenolic contents, isolated crude saponins, investigated antioxidant and anticholinestrase potential of P. hydropiper extracts. The results indicate that P. hydropiper is enriched with potent bioactive compounds and warrant further investigation by isolation and structural elucidation to find novel and affordable compounds for the treatment of various neurological disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L.

            The family Polygonaceae is known for its traditional use in the management of various neurological disorders including Alzheimer’s disease (AD). In search of new anti-AD drugs, β-sitosterol isolated from Polygonum hydropiper was subjected to in vitro, in vivo, behavioral and molecular docking studies to confirm its possibility as a potential anti-Alzheimer’s agent. The in vitro AChE, BChE inhibitory potentials of β-sitosterol were investigated following Ellman’s assay. The antioxidant activity was tested using DPPH, ABTS and H2O2 assays. Behavioral studies were performed on a sub-strain of transgenic mice using shallow water maze (SWM), Y-maze and balance beam tests. β-sitosterol was tested for in vivo inhibitory potentials against cholinesterase’s and free radicals in the frontal cortex (FC) and hippocampus (HC). The molecular docking study was performed to predict the binding mode of β-sitosterol in the active sites of AChE and BChE as inhibitor. Considerable in vitro and in vivo cholinesterase inhibitory effects were observed in the β-sitosterol treated groups. β-sitosterol exhibited an IC50 value of 55 and 50 μg/ml against AChE and BChE respectively. Whereas, the activity of these enzymes were significantly low in FC and HC homogenates of transgenic animals. Molecular docking studies also support the binding of β-sitosterol with the target enzyme and further support the in vitro and in vivo results. In the antioxidant assays, the IC50 values were observed as 140, 120, and 280 μg/ml in the DPPH, ABTS and H2O2 assays respectively. The free radicals load in the brain tissues was significantly declined in the β-sitosterol treated animals as compared to the transgenic-saline treated groups. In the memory assessment and coordination tasks including SWM, Y-maze and balance beam tests, β-sitosterol treated transgenic animals showed gradual improvement in working memory, spontaneous alternation behavior and motor coordination. These results conclude that β-sitosterol is a potential compound for the management of memory deficit disorders like AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

              The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                10 December 2019
                2019
                : 13
                : 4185-4194
                Affiliations
                [1 ]Department of Pharmacy, University of Malakand , Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
                [2 ]Department of Pharmacy, Sarhad University of Science & Information Technology , Peshawar, KP (Khyber Pakhtunkhwa), Pakistan
                [3 ]Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus , Abbottabad 22060, KP (Khyber Pakhtunkhwa), Pakistan
                [4 ]Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University Riyadh , Riyadh, Saudi Arabia
                [5 ]Phytochemistry Department, National Research Centre , Giza, Egypt
                [6 ]Department of Pharmacology, College of Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
                Author notes
                Correspondence: Haroon Rahim; Abdul Sadiq Department of Pharmacy, Sarhad University of Science and Information Technology Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacy, University of Malakand Khyber Pakhtunkhwa , Chakdara18800, PakistanTel +92-3329461642; +92-301-2297102 Email hrahimpk@gmail.com, sadiquom@yahoo.com
                Author information
                http://orcid.org/0000-0002-4299-2445
                http://orcid.org/0000-0002-4978-4331
                http://orcid.org/0000-0003-2411-6510
                http://orcid.org/0000-0003-0456-3196
                Article
                226080
                10.2147/DDDT.S226080
                6911349
                1280d8a6-6a7c-4b31-8ada-207d340be1c6
                © 2019 Ahmad et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 05 August 2019
                : 12 November 2019
                Page count
                Figures: 3, Tables: 4, References: 41, Pages: 10
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                succinimide,alzheimer’s disease,mtt,oxidative stress,diabetes,helminthiasis

                Comments

                Comment on this article