21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Finite size effect induces stochastic gamma oscillation in inhibitory network with conduction delay

      abstract
      1 , 2 , 3 , , 2 , 3 , 1 , 3
      BMC Neuroscience
      BioMed Central
      The Twenty Third Annual Computational Neuroscience Meeting: CNS*2014
      26-31 July 2014

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cortical gamma frequency (30-100 Hz) are known to be associated with many cognitive processes. Understanding the dynamics in the gamma band is crucial in neuroscience. Stochastic gamma oscillations due to finite size effects were reported using the stochastic Wilson-Cowan model ([1] and [2]). On the other hand, temporal correlation can be induced by excitation [3] as well as inhibition [4]. Especially, oscillations induced by the conduction delay of the inhibitory feedback is a possible mechanism ([4], [5] and [6]) for gamma rhythms. We investigate the role of both finite size effects and the conduction delay on the emergence of gamma oscillations in an inhibitory all-to-all neural network. To this end, we expand the recently proposed linear noise approximation (LNA) technique to this non-markovian ”delay” case [1]. This allows us to compute a theoretical expression for the power spectrum of the population activity. Our analytical result is in good agreement with the power spectrum obtained via numerical simulations for a range of parameters. We show in the left part of the Figure 1 a raster plot depicting the spiking time of each neuron where each neuron follows the stochastic random walk between active and silent state, in red the spike timing of one particular neuron. The second plot is a comparison between the deterministic rate model (black curve) and the stochastic spiking process (blue curve). If the deterministic counterpart reaches a stable fixed point, the stochastic process exhibits self sustained oscillations. In the third plot, the theoretical power spectrum obtained via the LNA method (black curve) and the power spectrum obtained from the numerical simulations (blue curve) are shown to agree nicely. In the last plot we give the phase diagram, showing that the model is under the oscillatory regime. This tells us that gamma oscillations can be caused by the combination of delay and finite size effects in such an inhibitory neural network. Figure 1 The left panel is a raster plot of 200 interneurons. The blue line represents the global activity of the network. The second panel shows a comparison between the stochastic process and its deterministic counterpart. The third panel compares the numerical (blue) and theoretical (black) power spectra. The last panel shows the phase diagram as a function of the feedback weight and the delay.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of gamma oscillations.

          Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast global oscillations in networks of integrate-and-fire neurons with low firing rates.

            We study analytically the dynamics of a network of sparsely connected inhibitory integrate-and-fire neurons in a regime where individual neurons emit spikes irregularly and at a low rate. In the limit when the number of neurons --> infinity, the network exhibits a sharp transition between a stationary and an oscillatory global activity regime where neurons are weakly synchronized. The activity becomes oscillatory when the inhibitory feedback is strong enough. The period of the global oscillation is found to be mainly controlled by synaptic times but depends also on the characteristics of the external input. In large but finite networks, the analysis shows that global oscillations of finite coherence time generically exist both above and below the critical inhibition threshold. Their characteristics are determined as functions of systems parameters in these two different regions. The results are found to be in good agreement with numerical simulations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Emergent Oscillations in Networks of Stochastic Spiking Neurons

              Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework.
                Bookmark

                Author and article information

                Contributors
                Conference
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2014
                21 July 2014
                : 15
                : Suppl 1
                : P115
                Affiliations
                [1 ]Physics department, University of Ottawa, Canada
                [2 ]Mind, Brain Imaging and Neuroethics, Royal Ottawa Healthcare, Institute of Mental Health Research, Ottawa, Canada
                [3 ]Center for Neural Dynamics, University of Ottawa
                Article
                1471-2202-15-S1-P115
                10.1186/1471-2202-15-S1-P115
                4124993
                12842f7e-3a4c-4945-a7fa-9db61fb49cec
                Copyright © 2014 Dumont et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                The Twenty Third Annual Computational Neuroscience Meeting: CNS*2014
                Québec City, Canada
                26-31 July 2014
                History
                Categories
                Poster Presentation

                Neurosciences
                Neurosciences

                Comments

                Comment on this article