29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AI). We developed ultra-high sensitivity multiplexed digital PCR assays for ESR1 mutations in circulating tumor DNA (ctDNA) and used these to investigate the clinical relevance and origin of ESR1 mutations in a cohort of 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies, and could be assessed in samples shipped at room temperature in preservative tubes without loss of accuracy. ESR1 mutations were found exclusively in patients with estrogen receptor positive breast cancer previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy (HR 3.1, 95%CI 1.9-23.1, log rank p=0.0041). ESR1 mutation prevalence differed markedly between patients that were first exposed to AI during the adjuvant and metastatic settings (5.8% (3/52) vs 36.4% (16/44) respectively, p=0.0002). In an independent cohort, ESR1 mutations were identified in 0% (0/32, 95%CI 0-10.9%) tumor biopsies taken after progression on adjuvant AI. In a patient with serial samples taken during metastatic treatment, ESR1 mutation was selected during metastatic AI therapy, to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI therapy, but are commonly selected by therapy for metastatic disease, providing evidence that the mechanisms of resistance to targeted therapy may be substantially different between the treatment of micro-metastatic and overt metastatic cancer.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft

          Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumor progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumor, a brain metastasis, and a xenograft derived from the primary tumor. The metastasis contained two de novo mutations and a large deletion not present in the primary tumor, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumor mutations, and displayed a mutation enrichment pattern that paralleled the metastasis (16 of 20 genes). Two overlapping large deletions, encompassing CTNNA1, were present in all three tumor samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared to the primary tumor suggest that secondary tumors may arise from a minority of cells within the primary.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

            Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              D538G mutation in estrogen receptor-α: A novel mechanism for acquired endocrine resistance in breast cancer.

              Resistance to endocrine therapy occurs in virtually all patients with estrogen receptor α (ERα)-positive metastatic breast cancer, and is attributed to various mechanisms including loss of ERα expression, altered activity of coregulators, and cross-talk between the ERα and growth factor signaling pathways. To our knowledge, acquired mutations of the ERα have not been described as mediating endocrine resistance. Samples of 13 patients with metastatic breast cancer were analyzed for mutations in cancer-related genes. In five patients who developed resistance to hormonal therapy, a mutation of A to G at position 1,613 of ERα, resulting in a substitution of aspartic acid at position 538 to glycine (D538G), was identified in liver metastases. Importantly, the mutation was not detected in the primary tumors obtained prior to endocrine treatment. Structural modeling indicated that D538G substitution leads to a conformational change in the ligand-binding domain, which mimics the conformation of activated ligand-bound receptor and alters binding of tamoxifen. Indeed, experiments in breast cancer cells indicated constitutive, ligand-independent transcriptional activity of the D538G receptor, and overexpression of it enhanced proliferation and conferred resistance to tamoxifen. These data indicate a novel mechanism of acquired endocrine resistance in breast cancer. Further studies are needed to assess the frequency of D538G-ERα among patients with breast cancer and explore ways to inhibit its activity and restore endocrine sensitivity.
                Bookmark

                Author and article information

                Journal
                101505086
                36963
                Sci Transl Med
                Sci Transl Med
                Science translational medicine
                1946-6234
                1946-6242
                18 August 2016
                11 November 2015
                11 November 2016
                : 7
                : 313
                : 313ra182
                Affiliations
                [1 ] The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
                [2 ] Breast Unit, Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
                [3 ] Department of medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                Author notes
                [#]

                Current address: Translational Science, Oncology iMed, AstraZeneca, Cambridge, UK

                [* ]To whom correspondence should be addressed: nicholas.turner@ 123456icr.ac.uk
                Article
                PMC4998737 PMC4998737 4998737 nihpa803731
                10.1126/scitranslmed.aac7551
                4998737
                26560360
                1286b603-742f-401e-bd01-50bfa605b398
                History
                Categories
                Article

                Comments

                Comment on this article