9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature.

      1 , , ,
      The Review of scientific instruments
      AIP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A measurement setup is presented that allows for a complete and non-destructive material characterization of electrochemically deposited thermoelectric material. All electrical (Seebeck coefficient α, electrical conductivity σ), thermal (thermal conductivity λ), and thermoelectric (figure of merit ZT) material parameters are determined within a single measurement run. The setup is capable of characterizing individual electrochemically deposited Bi(2+x)Te(3-x) pillars of various size and thickness down to a few 10 μm, embedded in a polymer matrix with a maximum measurement area of 1 × 1 cm(2). The temperature range is limited to an application specific window near room temperature of 10 °C to 70 °C. A maximum thermal flux of 1 W/cm(2) can be applied to the device under test (DUT) by the Peltier element driven heat source and sink. The setup has a highly symmetric design and DUTs can be mounted and dismounted within few seconds. A novel in situ recalibration method for a simple, quick and more accurate calibration of all sensors has been developed. Thermal losses within the setup are analysed and are mathematically considered for each measurement. All random and systematic errors are encountered for by a MATLAB routine, calculating all the target parameters and their uncertainties. The setup provides a measurement accuracy of ±2.34 μV/K for α, ±810.16 S/m for σ, ±0.13 W/mK for λ, and ±0.0075 for ZT at a mean temperature of 42.5 °C for the specifically designed test samples with a pillar diameter of 696 μm and thickness of 134 μm, embedded in a polyethylene terephthalate polymer matrix.

          Related collections

          Author and article information

          Journal
          Rev Sci Instrum
          The Review of scientific instruments
          AIP Publishing
          1089-7623
          0034-6748
          Jul 2012
          : 83
          : 7
          Affiliations
          [1 ] Micro and Nanosystems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland. schwyter@micro.mavt.ethz.ch
          Article
          10.1063/1.4737880
          22852715
          12899a23-b9a9-4e43-9f19-6dafefbd1951
          History

          Comments

          Comment on this article