22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears

      Journal of the Association for Research in Otolaryngology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d141139e105">Comparative auditory studies make it possible both to understand the origins of modern ears and the factors underlying the similarities and differences in their performance. After all lineages of land vertebrates had independently evolved tympanic middle ears in the early Mesozoic era, the subsequent tens of millions of years led to the hearing organ of lizards, birds, and mammals becoming larger and their upper frequency limits higher. In extant species, lizard papillae remained relatively small (&lt;2 mm), but avian papillae attained a maximum length of 11 mm, with the highest frequencies in both groups near 12 kHz. Hearing-organ sizes in modern mammals vary more than tenfold, up to &gt;70 mm (made possible by coiling), as do their upper frequency limits (from 12 to &gt;200 kHz). The auditory organs of the three amniote groups differ characteristically in their cellular structure, but their hearing sensitivity and frequency selectivity within their respective hearing ranges hardly differ. In the immediate primate ancestors of humans, the cochlea became larger and lowered its upper frequency limit. Modern humans show an unusual trend in frequency selectivity as a function of frequency. It is conceivable that the frequency selectivity patterns in humans were influenced in their evolution by the development of speech. </p>

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          The delayed rise of present-day mammals.

          Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nothing in Biology Makes Sense except in the Light of Evolution

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Derivation of auditory filter shapes from notched-noise data.

              A well established method for estimating the shape of the auditory filter is based on the measurement of the threshold of a sinusoidal signal in a notched-noise masker, as a function of notch width. To measure the asymmetry of the filter, the notch has to be placed both symmetrically and asymmetrically about the signal frequency. In previous work several simplifying assumptions and approximations were made in deriving auditory filter shapes from the data. In this paper we describe modifications to the fitting procedure which allow more accurate derivations. These include: 1) taking into account changes in filter bandwidth with centre frequency when allowing for the effects of off-frequency listening; 2) correcting for the non-flat frequency response of the earphone; 3) correcting for the transmission characteristics of the outer and middle ear; 4) limiting the amount by which the centre frequency of the filter can shift in order to maximise the signal-to-masker ratio. In many cases, these modifications result in only small changes to the derived filter shape. However, at very high and very low centre frequencies and for hearing-impaired subjects the differences can be substantial. It is also shown that filter shapes derived from data where the notch is always placed symmetrically about the signal frequency can be seriously in error when the underlying filter is markedly asymmetric. New formulae are suggested describing the variation of the auditory filter with frequency and level. The implication of the results for the calculation of excitation patterns are discussed and a modified procedure is proposed. The appendix list FORTRAN computer programs for deriving auditory filter shapes from notched-noise data and for calculating excitation patterns. The first program can readily be modified so as to derive auditory filter shapes from data obtained with other types of maskers, such as rippled noise.
                Bookmark

                Author and article information

                Journal
                Journal of the Association for Research in Otolaryngology
                JARO
                Springer Nature
                1525-3961
                1438-7573
                February 2017
                August 18 2016
                February 2017
                : 18
                : 1
                : 1-24
                Article
                10.1007/s10162-016-0579-3
                5243258
                27539715
                1290ee02-1113-4fb3-8851-6445b8dfda44
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article