22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insect egg size and shape evolve with ecology but not developmental rate

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of body size: what keeps organisms small?

          It is widely agreed that fecundity selection and sexual selection are the major evolutionary forces that select for larger body size in most organisms. The general, equilibrium view is that selection for large body size is eventually counterbalanced by opposing selective forces. While the evidence for selection favoring larger body size is overwhelming, counterbalancing selection favoring small body size is often masked by the good condition of the larger organism and is therefore less obvious. The suggested costs of large size are: (1) viability costs in juveniles due to long development and/or fast growth; (2) viability costs in adults and juveniles due to predation, parasitism, or starvation because of reduced agility, increased detectability, higher energy requirements, heat stress, and/or intrinsic costs of reproduction; (3) decreased mating success of large males due to reduced agility and/or high energy requirements; and (4) decreased reproductive success of large females and males due to late reproduction. A review of the literature indicates a substantial lack of empirical evidence for these various mechanisms and highlights the need for experimental studies that specifically address the fitness costs of being large at the ecological, physiological, and genetic levels. Specifically, theoretical investigations and comprehensive case studies of particular model species are needed to elucidate whether sporadic selection in time and space is sufficient to counterbalance perpetual and strong selection for large body size.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phylogenetic signal and linear regression on species data

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early bursts of body size and shape evolution are rare in comparative data.

              George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                July 2019
                July 3 2019
                July 2019
                : 571
                : 7763
                : 58-62
                Article
                10.1038/s41586-019-1302-4
                31270484
                129df3a8-8fb3-4480-80e9-cb3e63237826
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article