28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estrogenic Regulation of the GnRH Neuron

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reproductive function is regulated by the secretion of luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary and the steroid hormones from the gonads. The dynamic changes in the levels of the reproductive hormones regulate secondary sex characteristics, gametogenesis, cellular function, and behavior. Hypothalamic GnRH neurons, with cell bodies located in the basal hypothalamus, represent the final common pathway for neuronally derived signals to the pituitary. As such, they serve as integrators of a dizzying array of signals including sensory inputs mediating information about circadian, seasonal, behavioral, pheromonal, and emotional cues. Additionally, information about peripheral physiological function may also be included in the integrative signal to the GnRH neuron. These signals may communicate information about metabolic status, disease, or infection. Gonadal steroid hormones arguably exert the most important effects on GnRH neuronal function. In both males and females, the gonadal steroid hormones exert negative feedback regulation on axis activity at both the level of the pituitary and the hypothalamus. These negative feedback loops regulate homeostasis of steroid hormone levels. In females, a cyclic reversal of estrogen feedback produces a positive feedback loop at both the hypothalamic and pituitary levels. Central positive feedback results in a dramatic increase in GnRH secretion (Moenter et al., 1992; Xia et al., 1992; Clarke, 1993; Sisk et al., 2001). This is coupled with an increase in pituitary sensitivity to GnRH (Savoy-Moore et al., 1980; Turzillo et al., 1995), which produces the massive surge in secretion of LH that triggers ovulation. While feedback regulation of the axis in males is in part mediated by estrogen receptors (ER), there is not a clear consensus as to the relative role of ER versus AR signaling in males (Lindzey et al., 1998; Wersinger et al., 1999). Therefore, this review will focus on estrogenic signaling in the female.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: not found
          • Article: not found

          The nuclear receptor superfamily: the second decade.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.

            We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54-/- mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54-/- mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54-/- mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.

              Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not predicted by current models of hormone activation. Cycles of ER complex assembly are followed by transcription. In contrast, the anti-estrogen tamoxifen (TAM) recruits corepressors but not coactivators. Using a genetic approach, we show that recruitment of the p160 class of coactivators is sufficient for gene activation and for the growth stimulatory actions of estrogen in breast cancer supporting a model in which ER cofactors play unique roles in estrogen signaling.
                Bookmark

                Author and article information

                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrin.
                Frontiers in Endocrinology
                Frontiers Research Foundation
                1664-2392
                09 April 2012
                2012
                : 3
                : 52
                Affiliations
                [1] 1simpleDepartment of Pediatrics, Johns Hopkins University School of Medicine Baltimore, MD, USA
                [2] 2simpleWisconsin National Primate Research Center Madison, WI, USA
                Author notes

                Edited by: Henryk Urbanski, Oregon National Primate Research Center, USA

                Reviewed by: A. Kemal Topaloglu, Cukorova University Faculty of Medicine, Turkey; Raul Miguel Luque, University of Cordoba, Spain

                *Correspondence: Andrew Wolfe, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. e-mail: awolfe3@ 123456jhmi.edu

                This article was submitted to Frontiers in Genomic Endocrinology, a specialty of Frontiers in Endocrinology.

                Article
                10.3389/fendo.2012.00052
                3356008
                22654870
                129fd1f0-b619-4f48-90ed-e2f4ad2a8423
                Copyright © 2012 Radovick, Levine and Wolfe.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 13 December 2011
                : 16 March 2012
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 194, Pages: 11, Words: 11992
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                kisspeptin,gpr54,arcuate,avpv,progesterone receptor,feedback,gnrh,estrogen receptor
                Endocrinology & Diabetes
                kisspeptin, gpr54, arcuate, avpv, progesterone receptor, feedback, gnrh, estrogen receptor

                Comments

                Comment on this article