15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rereading the genetic origin of cancer: the puzzle of all eras

      editorial
      * , 1 , , 1 , 2
      Future Science OA
      Future Science Ltd
      cancer, evolution, multicellular organism, mutation, risky alleles

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.

          A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer.

            Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year. Overtreatment of indolent disease also results in significant morbidity. Common genetic alterations in prostate cancer include losses of NKX3.1 (8p21) and PTEN (10q23), gains of AR (the androgen receptor gene) and fusion of ETS family transcription factor genes with androgen-responsive promoters. Recurrent somatic base-pair substitutions are believed to be less contributory in prostate tumorigenesis but have not been systematically analyzed in large cohorts. Here, we sequenced the exomes of 112 prostate tumor and normal tissue pairs. New recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most frequently mutated gene, with mutations involving the SPOP substrate-binding cleft in 6-15% of tumors across multiple independent cohorts. Prostate cancers with mutant SPOP lacked ETS family gene rearrangements and showed a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular subtype of prostate cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Germline mutations in HOXB13 and prostate-cancer risk.

              Family history is a significant risk factor for prostate cancer, although the molecular basis for this association is poorly understood. Linkage studies have implicated chromosome 17q21-22 as a possible location of a prostate-cancer susceptibility gene. We screened more than 200 genes in the 17q21-22 region by sequencing germline DNA from 94 unrelated patients with prostate cancer from families selected for linkage to the candidate region. We tested family members, additional case subjects, and control subjects to characterize the frequency of the identified mutations. Probands from four families were discovered to have a rare but recurrent mutation (G84E) in HOXB13 (rs138213197), a homeobox transcription factor gene that is important in prostate development. All 18 men with prostate cancer and available DNA in these four families carried the mutation. The carrier rate of the G84E mutation was increased by a factor of approximately 20 in 5083 unrelated subjects of European descent who had prostate cancer, with the mutation found in 72 subjects (1.4%), as compared with 1 in 1401 control subjects (0.1%) (P=8.5x10(-7)). The mutation was significantly more common in men with early-onset, familial prostate cancer (3.1%) than in those with late-onset, nonfamilial prostate cancer (0.6%) (P=2.0x10(-6)). The novel HOXB13 G84E variant is associated with a significantly increased risk of hereditary prostate cancer. Although the variant accounts for a small fraction of all prostate cancers, this finding has implications for prostate-cancer risk assessment and may provide new mechanistic insights into this common cancer. (Funded by the National Institutes of Health and others.).
                Bookmark

                Author and article information

                Journal
                Future Sci OA
                Future Sci OA
                FSOA
                Future Science OA
                Future Science Ltd (London, UK )
                2056-5623
                12 May 2022
                March 2022
                12 May 2022
                : 8
                : 5
                : FSO799
                Affiliations
                [1 ]Department of Medical Laboratory Sciences, Pharmacological & Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman, 19328, Jordan
                [2 ]Johann Heinrich von Thünen Institute, Bundesallee, 50/38116, Braunschweig, Germany
                Author notes
                [* ]Author for correspondence: b.abumsimir@ 123456ammanu.edu.jo
                Author information
                https://orcid.org/0000-0002-2483-7716
                Article
                10.2144/fsoa-2022-0014
                9150604
                12a6661f-5132-4e8c-ae34-7a44ef9751b1
                © 2022 Berjas Abumsimir

                This work is licensed under the Creative Commons Attribution 4.0 License

                History
                : 07 March 2022
                : 28 April 2022
                : 12 May 2022
                Page count
                Pages: 4
                Categories
                Editorial

                cancer,evolution,multicellular organism,mutation,risky alleles

                Comments

                Comment on this article