10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In contrast to the extensive use of microelectrode array (MEA) technology in electrophysiological studies of cultured neurons and cardiac muscles, the vast field of skeletal muscle research has yet to adopt the technology. Here we demonstrate an empowering MEA technology for high quality, multisite, long-term electrophysiological recordings from cultured skeletal myotubes. Individual rat skeletal myotubes cultured on micrometer sized gold mushroom-shaped microelectrode (gMμE) based MEA tightly engulf the gMμEs, forming a high seal resistance between the myotubes and the gMμEs. As a consequence, spontaneous action potentials generated by the contracting myotubes are recorded as extracellular field potentials with amplitudes of up to 10 mV for over 14 days. Application of a 10 ms, 0.5–0.9 V voltage pulse through the gMμEs electroporated the myotube membrane, and transiently converted the extracellular to intracellular recording mode for 10–30 min. In a fraction of the cultures stable attenuated intracellular recordings were spontaneously produced. In these cases or after electroporation, subthreshold spontaneous potentials were also recorded. The introduction of the gMμE-MEA as a simple-to-use, high-quality electrophysiological tool together with the progress made in the use of cultured human myotubes opens up new venues for basic and clinical skeletal muscle research, preclinical drug screening, and personalized medicine.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Revealing neuronal function through microelectrode array recordings

          Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrical coupling and neuronal synchronization in the Mammalian brain.

            Certain neurons in the mammalian brain have long been known to be joined by gap junctions, which are the most common type of electrical synapse. More recently, cloning of neuron-specific connexins, increased capability of visualizing cells within brain tissue, labeling of cell types by transgenic methods, and generation of connexin knockouts have spurred a rapid increase in our knowledge of the role of gap junctions in neural activity. This article reviews the many subtleties of transmission mediated by gap junctions and the mechanisms whereby these junctions contribute to synchronous firing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Axon physiology.

              Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the functional and computational repertoire of the axon is much richer than traditionally thought. Beyond classical axonal propagation, intrinsic voltage-gated ionic currents together with the geometrical properties of the axon determine several complex operations that not only control signal processing in brain circuits but also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how neuronal activity regulates both axon morphology and axonal function on a long-term time scale during development and adulthood.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                04 November 2016
                2016
                : 6
                : 36498
                Affiliations
                [1 ]Department of Neurobiology, the Alexander Silberman Institute of Life Science. The C. Smith Family and Prof. J. Elkes Laboratory for Collaborative Research in Psychobiology and the Harvey M. Kruger Family Center for Nanoscience. The Hebrew University of Jerusalem, Edmond J. Safra Campus , Jerusalem, 91904, Israel
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep36498
                10.1038/srep36498
                5095645
                27812002
                12c93593-1805-4335-bb92-08382e584b1f
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 August 2016
                : 17 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article