48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Are Ambient Ultrafine, Accumulation Mode, and Fine Particles Associated with Adverse Cardiac Responses in Patients Undergoing Cardiac Rehabilitation?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Mechanisms underlying previously reported air pollution and cardiovascular (CV) morbidity associations remain poorly understood.

          Objectives: We examined associations between markers of pathways thought to underlie these air pollution and CV associations and ambient particle concentrations in postinfarction patients.

          Methods: We studied 76 patients, from June 2006 to November 2009, who participated in a 10-week cardiac rehabilitation program following a recent (within 3 months) myocardial infarction or unstable angina. Ambient ultrafine particle (UFP; 10–100 nm), accumulation mode particle (AMP; 100–500 nm), and fine particle concentrations (PM 2.5; ≤ 2.5 μm in aerodynamic diameter) were monitored continuously. Continuous Holter electrocardiogram (ECG) recordings were made before and during supervised, graded, twice weekly, exercise sessions. A venous blood sample was collected and blood pressure was measured before sessions.

          Results: Using mixed effects models, we observed adverse changes in rMSSD [square root of the mean of the sum of the squared differences between adjacent normal-to-normal (NN) intervals], SDNN (standard deviation of all NN beat intervals), TpTe (time from peak to end of T-wave), heart rate turbulence, systolic and diastolic blood pressures, C-reactive protein, and fibrinogen associated with interquartile range increases in UFP, AMP, and PM 2.5 at 1 or more lag times within the previous 5 days. Exposures were not associated with MeanNN, heart-rate–corrected QT interval duration (QTc), deceleration capacity, and white blood cell count was not associated with UFP, AMP, and PM 2.5 at any lag time.

          Conclusions: In cardiac rehabilitation patients, particles were associated with subclinical decreases in parasympathetic modulation, prolongation of late repolarization duration, increased blood pressure, and systemic inflammation. It is possible that such changes could increase the risk of CV events in this susceptible population.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure measurement error in time-series studies of air pollution: concepts and consequences.

          Misclassification of exposure is a well-recognized inherent limitation of epidemiologic studies of disease and the environment. For many agents of interest, exposures take place over time and in multiple locations; accurately estimating the relevant exposures for an individual participant in epidemiologic studies is often daunting, particularly within the limits set by feasibility, participant burden, and cost. Researchers have taken steps to deal with the consequences of measurement error by limiting the degree of error through a study's design, estimating the degree of error using a nested validation study, and by adjusting for measurement error in statistical analyses. In this paper, we address measurement error in observational studies of air pollution and health. Because measurement error may have substantial implications for interpreting epidemiologic studies on air pollution, particularly the time-series analyses, we developed a systematic conceptual formulation of the problem of measurement error in epidemiologic studies of air pollution and then considered the consequences within this formulation. When possible, we used available relevant data to make simple estimates of measurement error effects. This paper provides an overview of measurement errors in linear regression, distinguishing two extremes of a continuum-Berkson from classical type errors, and the univariate from the multivariate predictor case. We then propose one conceptual framework for the evaluation of measurement errors in the log-linear regression used for time-series studies of particulate air pollution and mortality and identify three main components of error. We present new simple analyses of data on exposures of particulate matter < 10 microm in aerodynamic diameter from the Particle Total Exposure Assessment Methodology Study. Finally, we summarize open questions regarding measurement error and suggest the kind of additional data necessary to address them. Images Figure 1 Figure 2 Figure 3
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

            Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest that ultrafine particles composed of low-toxicity material such as polystyrene have proinflammatory activity as a consequence of their large surface area. This supports a role for such particles in the adverse health effects of PM(10). Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study.

              Decreased vagal activity after myocardial infarction results in reduced heart-rate variability and increased risk of death. To distinguish between vagal and sympathetic factors that affect heart-rate variability, we used a signal-processing algorithm to separately characterise deceleration and acceleration of heart rate. We postulated that diminished deceleration-related modulation of heart rate is an important prognostic marker. Our prospective hypotheses were that deceleration capacity is a better predictor of risk than left-ventricular ejection fraction (LVEF) and standard deviation of normal-to-normal intervals (SDNN). We quantified heart rate deceleration capacity by assessing 24-h Holter recordings from a post-infarction cohort in Munich (n=1455). We blindly validated the prognostic power of deceleration capacity in post-infarction populations in London, UK (n=656), and Oulu, Finland (n=600). We tested our hypotheses by assessment of the area under the receiver-operator characteristics curve (AUC). During a median follow-up of 24 months, 70 people died in the Munich cohort and 66 in the London cohort. The Oulu cohort was followed-up for 38 months and 77 people died. In the London cohort, mean AUC of deceleration capacity was 0.80 (SD 0.03) compared with 0.67 (0.04) for LVEF and 0.69 (0.04) for SDNN. In the Oulu cohort, mean AUC of deceleration capacity was 0.74 (0.03) compared with 0.60 (0.04) for LVEF and 0.64 (0.03) for SDNN (p<0.0001 for all comparisons). Stratification by dichotomised deceleration capacity was especially powerful in patients with preserved LVEF (p<0.0001 in all cohorts). Impaired heart rate deceleration capacity is a powerful predictor of mortality after myocardial infarction and is more accurate than LVEF and the conventional measures of heart-rate variability.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                27 April 2012
                August 2012
                : 120
                : 8
                : 1162-1169
                Affiliations
                [1 ]Department of Community and Preventive Medicine, and
                [2 ]Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
                [3 ]Department of Medicine, Mount Auburn Hospital, Cambridge, Massachusetts, USA
                [4 ]Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York, USA
                [5 ]Department of Biostatistics and Computational Biology, and
                [6 ]Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
                Author notes
                Address correspondence to D.Q. Rich, University of Rochester School of Medicine and Dentistry, Department of Community and Preventive Medicine, 265 Crittenden Blvd., CU 420644, Rochester, NY 14642 USA. Telephone: (585) 276-4119. Fax: (585) 424-1469. E-mail: david_rich@ 123456urmc.rochester.edu
                Article
                ehp.1104262
                10.1289/ehp.1104262
                3440073
                22542955
                12cbdc10-c2b1-48b0-a4cf-23139c5e77db
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 July 2011
                : 27 April 2012
                Categories
                Research

                Public health
                fibrinogen,repolarization,cardiac rehabilitation,heart rate variability,air pollution

                Comments

                Comment on this article