15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Minimum costs to manufacture new treatments for COVID-19

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          ‘Repurposing’ existing drugs to treat COVID-19 is vital to reducing mortality and controlling the pandemic. Several promising drugs have been identified and are in various stages of clinical trials globally. If efficacy of these drugs is demonstrated, rapid, mass availability at an affordable cost would be essential to ensuring equity and access especially amongst low- and middle-income economies.

          Methods

          Minimum costs of production were estimated from the costs of active pharmaceutical ingredients using established methodology, which had good predictive accuracy for medicines for hepatitis C and HIV amongst others. Data were extracted from global export shipment records or analysis of the route of chemical synthesis. The estimated costs were compared with list prices from a range of countries where pricing data were available.

          Results

          Minimum estimated costs of production were US $0.93/day for remdesivir, $1.45/day for favipiravir, $0.08/day for hydroxychloroquine, $0.02/day for chloroquine, $0.10/day for azithromycin, $0.28/day for lopinavir/ritonavir, $0.39/day for sofosbuvir/daclatasvir and $1.09/day for pirfenidone. Costs of production ranged between $0.30 and $31 per treatment course (10–28 days). Current prices of these drugs were far higher than the costs of production, particularly in the US.

          Conclusions

          Should repurposed drugs demonstrate efficacy against COVID-19, they could be manufactured profitably at very low costs, for much less than current list prices. Estimations for the minimum production costs can strengthen price negotiations and help ensure affordable access to vital treatment for COVID-19 at low prices globally.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19

          Abstract Background No therapeutics have yet been proven effective for the treatment of severe illness caused by SARS-CoV-2. Methods We conducted a randomized, controlled, open-label trial involving hospitalized adult patients with confirmed SARS-CoV-2 infection, which causes the respiratory illness Covid-19, and an oxygen saturation (Sao 2) of 94% or less while they were breathing ambient air or a ratio of the partial pressure of oxygen (Pao 2) to the fraction of inspired oxygen (Fio 2) of less than 300 mm Hg. Patients were randomly assigned in a 1:1 ratio to receive either lopinavir–ritonavir (400 mg and 100 mg, respectively) twice a day for 14 days, in addition to standard care, or standard care alone. The primary end point was the time to clinical improvement, defined as the time from randomization to either an improvement of two points on a seven-category ordinal scale or discharge from the hospital, whichever came first. Results A total of 199 patients with laboratory-confirmed SARS-CoV-2 infection underwent randomization; 99 were assigned to the lopinavir–ritonavir group, and 100 to the standard-care group. Treatment with lopinavir–ritonavir was not associated with a difference from standard care in the time to clinical improvement (hazard ratio for clinical improvement, 1.24; 95% confidence interval [CI], 0.90 to 1.72). Mortality at 28 days was similar in the lopinavir–ritonavir group and the standard-care group (19.2% vs. 25.0%; difference, −5.8 percentage points; 95% CI, −17.3 to 5.7). The percentages of patients with detectable viral RNA at various time points were similar. In a modified intention-to-treat analysis, lopinavir–ritonavir led to a median time to clinical improvement that was shorter by 1 day than that observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91). Gastrointestinal adverse events were more common in the lopinavir–ritonavir group, but serious adverse events were more common in the standard-care group. Lopinavir–ritonavir treatment was stopped early in 13 patients (13.8%) because of adverse events. Conclusions In hospitalized adult patients with severe Covid-19, no benefit was observed with lopinavir–ritonavir treatment beyond standard care. Future trials in patients with severe illness may help to confirm or exclude the possibility of a treatment benefit. (Funded by Major Projects of National Science and Technology on New Drug Creation and Development and others; Chinese Clinical Trial Register number, ChiCTR2000029308.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial

            Background Chloroquine and hydroxychloroquine have been found to be efficient on SARS-CoV-2, and reported to be efficient in Chinese COV-19 patients. We evaluate the role of hydroxychloroquine on respiratory viral loads. Patients and methods French Confirmed COVID-19 patients were included in a single arm protocol from early March to March 16th, to receive 600mg of hydroxychloroquine daily and their viral load in nasopharyngeal swabs was tested daily in a hospital setting. Depending on their clinical presentation, azithromycin was added to the treatment. Untreated patients from another center and cases refusing the protocol were included as negative controls. Presence and absence of virus at Day6-post inclusion was considered the end point. Results Six patients were asymptomatic, 22 had upper respiratory tract infection symptoms and eight had lower respiratory tract infection symptoms. Twenty cases were treated in this study and showed a significant reduction of the viral carriage at D6-post inclusion compared to controls, and much lower average carrying duration than reported of untreated patients in the literature. Azithromycin added to hydroxychloroquine was significantly more efficient for virus elimination. Conclusion Despite its small sample size our survey shows that hydroxychloroquine treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies

              The coronavirus disease 2019 (COVID-19) virus is spreading rapidly, and scientists are endeavoring to discover drugs for its efficacious treatment in China. Chloroquine phosphate, an old drug for treatment of malaria, is shown to have apparent efficacy and acceptable safety against COVID-19 associated pneumonia in multicenter clinical trials conducted in China. The drug is recommended to be included in the next version of the Guidelines for the Prevention, Diagnosis, and Treatment of Pneumonia Caused by COVID-19 issued by the National Health Commission of the People's Republic of China for treatment of COVID-19 infection in larger populations in the future.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Virus Erad
                J Virus Erad
                Journal of Virus Eradication
                Elsevier B.V.
                2055-6640
                2055-6659
                2 July 2020
                April 2020
                2 July 2020
                : 6
                : 2
                : 61-69
                Affiliations
                [1 ]Department of Translational Medicine, University of Liverpool, UK
                [2 ]Faculty of Medicine, Imperial College London, UK
                [3 ]Burnet Institute, Melbourne, Australia
                [4 ]Chemistry and Pharmaceutical Sciences, Howard University, Washington, USA
                Author notes
                [* ]Corresponding author: Dr Andrew Hill, Department of Translational Medicine, University of Liverpool, 70 Pembroke Place, LiverpoolL69 3GF, UK microhaart@ 123456aol.com
                Article
                S2055-6640(20)30018-2
                10.1016/S2055-6640(20)30018-2
                7331548
                32405423
                12cda57d-805a-4806-88b3-71322c7e8ba8
                Copyright © 2020 Elsevier B.V.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                sars-cov2,covid-19,drug prices,access to medicines
                sars-cov2, covid-19, drug prices, access to medicines

                Comments

                Comment on this article