15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Host–parasite co-evolution and its genomic signature

      ,
      Nature Reviews Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular signatures of natural selection.

          There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological and biomedical implications of the co-evolution of pathogens and their hosts.

            Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host-pathogen interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Balancing Selection and Its Effects on Sequences in Nearby Genome Regions

              Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Science and Business Media LLC
                1471-0056
                1471-0064
                August 28 2020
                Article
                10.1038/s41576-020-0269-1
                32860017
                12d7073b-6a33-4039-89e5-23253aaf2d82
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article