11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Backpack PCR: A point-of-collection diagnostic platform for the rapid detection of Brugia parasites in mosquitoes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Currently, molecular xenomonitoring efforts for lymphatic filariasis rely on PCR or real-time PCR-based detection of Brugia malayi, Brugia timori and Wuchereria bancrofti in mosquito vectors. Most commonly, extraction of DNA from mosquitoes is performed using silica column-based technologies. However, such extractions are both time consuming and costly, and the diagnostic testing which follows typically requires expensive thermal cyclers or real-time PCR instruments. These expenses present significant challenges for laboratories in many endemic areas. Accordingly, in such locations, there exists a need for inexpensive, equipment-minimizing diagnostic options that can be transported to the field and implemented in minimal resource settings. Here we present a novel diagnostic approach for molecular xenomonitoring of filarial parasites in mosquitoes that uses a rapid, NaOH-based DNA extraction methodology coupled with a portable, battery powered PCR platform and a test strip-based DNA detection assay. While the research reported here serves as a proof-of-concept for the backpack PCR methodology for the detection of filarial parasites in mosquitoes, the platform should be easily adaptable to the detection of W. bancrofti and other mosquito-transmitted pathogens.

          Methodology/Principal findings

          Through comparisons with standard silica column-based DNA extraction techniques, we evaluated the performance of a rapid, NaOH-based methodology for the extraction of total DNA from pools of parasite-spiked vector mosquitoes. We also compared our novel test strip-based detection assay to real-time PCR and conventional PCR coupled with gel electrophoresis, and demonstrated that this method provides sensitive and genus-specific detection of parasite DNA from extracted mosquito pools. Finally, by comparing laboratory-based thermal cycling with a field-friendly miniaturized PCR approach, we have demonstrated the potential for the point-of-collection-based use of this entire diagnostic platform that is compact enough to fit into a small backpack.

          Conclusions/Significance

          Because this point-of-collection diagnostic platform eliminates reliance on expensive and bulky instrumentation without compromising sensitivity or specificity of detection, it provides an alternative to cost-prohibitive column-dependent DNA extractions that are typically coupled to detection methodologies requiring advanced laboratory infrastructure. In doing so, this field-ready system should increase the feasibility of molecular xenomonitoring within B. malayi-endemic locations. Of greater importance, this backpack PCR system also provides the proof-of-concept framework for the development of a parallel assay for the detection of W. bancrofti.

          Author summary

          Molecular xenomonitoring has demonstrated significant potential as a non-invasive means of providing reliable surveillance for the presence of lymphatic filariasis (LF)-causing parasites. Given the continuing successes of global mass drug administration efforts, the need for such non-invasive surveillance techniques is expanding. However, considering the significant infrastructural demands which such surveillance requires, the development of simplified surveillance methodologies will be fundamental to future programmatic implementation efforts. Accordingly, we have developed a novel, simplified diagnostic platform for point-of-collection-based detection of the LF-causing parasite, Brugia malayi in pools of mosquitoes. By coupling a rapid and inexpensive DNA extraction methodology with a field-friendly amplification platform and test strip-based detection assay, this backpack PCR system eliminates the need for expensive instrumentation and laboratory-based infrastructure. Furthermore, adaptation of the platform described here will allow for the straightforward and rapid development of a parallel assay for the detection of Wuchereria bancrofti, facilitating the increased use of xenomonitoring and enabling mosquito surveillance efforts in regions lacking sophisticated laboratory infrastructure.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Lymphatic filariasis and onchocerciasis.

          Lymphatic filariasis and onchocerciasis are parasitic helminth diseases that constitute a serious public health issue in tropical regions. The filarial nematodes that cause these diseases are transmitted by blood-feeding insects and produce chronic and long-term infection through suppression of host immunity. Disease pathogenesis is linked to host inflammation invoked by the death of the parasite, causing hydrocoele, lymphoedema, and elephantiasis in lymphatic filariasis, and skin disease and blindness in onchocerciasis. Most filarial species that infect people co-exist in mutualistic symbiosis with Wolbachia bacteria, which are essential for growth, development, and survival of their nematode hosts. These endosymbionts contribute to inflammatory disease pathogenesis and are a target for doxycycline therapy, which delivers macrofilaricidal activity, improves pathological outcomes, and is effective as monotherapy. Drugs to treat filariasis include diethylcarbamazine, ivermectin, and albendazole, which are used mostly in combination to reduce microfilariae in blood (lymphatic filariasis) and skin (onchocerciasis). Global programmes for control and elimination have been developed to provide sustained delivery of drugs to affected communities to interrupt transmission of disease and ultimately eliminate this burden on public health. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discrimination between six species of canine microfilariae by a single polymerase chain reaction.

            Canine dirofilariasis caused by Dirofilaria immitis is usually diagnosed by specific antigen testing and/or identification of microfilariae. However, D. immitis and at least six other filariae can produce canine microfilaremias with negative heartworm antigen tests. Discriminating these can be of clinical importance. To resolve discordant diagnoses by two diagnostic laboratories in an antigen-negative, microfilaremic dog recently imported into the US from Europe we developed a simple molecular method of identifying different microfilariae, and subsequently validated our method against six different filariae known to infect dogs by amplifying ribosomal DNA spacer sequences by polymerase chain reaction using common and species-specific primers, and sequencing the products to confirm the genotype of the filariae. We identified the filaria in this dog as D. repens. This is the first case of D. repens infection in the United States. Additionally, we examined microfilariae from five additional antigen-negative, microfilaremic dogs and successfully identified the infecting parasite in each case. Our diagnoses differed from the initial morphological diagnosis in three of these cases, demonstrating the inaccuracy of morphological diagnosis. In each case, microfilariae identified morphologically as A. reconditum were identified as D. immitis by molecular methods. Finally, we demonstrated that our PCR method should amplify DNA from at least two additional filariae (Onchocerca and Mansonella), suggesting that this method may be suitable for genotyping all members of the family Onchocercidae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ICT Filariasis Test: A rapid-format antigen test for diagnosis of bancroftian filariasis.

              Antigen testing is now recognized as the method of choice for detection of Wuchereria bancrofti infections. Unlike tests that detect microfilariae, antigen tests can be performed with blood collected during the day or night. However, existing enzyme-linked immunosorbent assay (ELISA) tests for filarial antigenemia are difficult to perform in the field, and this has limited their use in endemic countries. In this article, Gary Weil, Patrick Lammie and Niggi Weiss review their experience with a new rapid-format filarial antigen test. They found that the ICT card test was very easy to perform and that it was comparable with ELISA for the detection of filarial antigen in sera from people with microfilaremia. The introduction now of an antigen test suitable for use in the field is especially timely, in that it may facilitate implementation of new strategies proposed by the World Health Organization for control and elimination of lymphatic filariasis.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: MethodologyRole: ResourcesRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                21 November 2018
                November 2018
                : 12
                : 11
                : e0006962
                Affiliations
                [1 ] Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
                [2 ] Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
                [3 ] The Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
                QIMR Berghofer Medical Research Institute, AUSTRALIA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-8624-2443
                Article
                PNTD-D-18-00993
                10.1371/journal.pntd.0006962
                6281274
                30462640
                12d7b49a-6126-47d4-bec0-8fa3544bc947
                © 2018 Zaky et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 June 2018
                : 30 October 2018
                Page count
                Figures: 3, Tables: 3, Pages: 17
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: RR211-508/4787366
                Award Recipient :
                Funded by: Blakeslee Fund for Genetics Research at Smith College
                Award Recipient :
                This study was principally funded by a Filarial Research Reagent Resource Center sub-award to SAW (RR211-508/4787366) funded by NIH contract HHSN272200001 (Animal Models of Infectious Diseases). Additional support was provided by the Blakeslee Fund for Genetics Research at Smith College. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Brugia
                Brugia Malayi
                Medicine and Health Sciences
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Research and analysis methods
                Extraction techniques
                DNA extraction
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Wuchereria
                Wuchereria Bancrofti
                Medicine and Health Sciences
                Parasitic Diseases
                Research and Analysis Methods
                Research Facilities
                Research Laboratories
                Biology and Life Sciences
                Developmental Biology
                Life Cycles
                Larvae
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-12-05
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article