10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatitis B virus (HBV) replicates its 3 kb DNA genome through capsid-internal reverse transcription, initiated by assembly of 120 core protein (HBc) dimers around a complex of viral pregenomic (pg) RNA and polymerase. Following synthesis of relaxed circular (RC) DNA capsids can be enveloped and secreted as stable virions. Upon infection of a new cell, however, the capsid disintegrates to release the RC-DNA into the nucleus for conversion into covalently closed circular (ccc) DNA. HBc´s interactions with nucleic acids are mediated by an arginine-rich C terminal domain (CTD) with intrinsically strong non-specific RNA binding activity. Adaptation to the changing demands for nucleic acid binding during the viral life cycle is thought to involve dynamic phosphorylation / dephosphorylation events. However, neither the relevant enzymes nor their target sites in HBc are firmly established. Here we developed a bacterial coexpression system enabling access to definably phosphorylated HBc. Combining Phos-tag gel electrophoresis, mass spectrometry and mutagenesis we identified seven of the eight hydroxy amino acids in the CTD as target sites for serine-arginine rich protein kinase 1 (SRPK1); fewer sites were phosphorylated by PKA and PKC. Phosphorylation of all seven sites reduced nonspecific RNA encapsidation as drastically as deletion of the entire CTD and altered CTD surface accessibility, without major structure changes in the capsid shell. The bulk of capsids from human hepatoma cells was similarly highly, yet non-identically, phosphorylated as by SRPK1. While not proving SRPK1 as the infection-relevant HBc kinase the data suggest a mechanism whereby high-level HBc phosphorylation principally suppresses RNA binding whereas one or few strategic dephosphorylation events enable selective packaging of the pgRNA/polymerase complex. The tools developed in this study should greatly facilitate the further deciphering of the role of HBc phosphorylation in HBV infection and its evaluation as a potential new therapeutic target.

          Author summary

          The liver-pathogenic hepatitis B virus (HBV) is a small enveloped DNA virus that replicates through reverse transcription of a pregenomic (pg)RNA. This requires specific encapsidation of pgRNA and viral polymerase into a shell of 240 core protein (HBc) subunits. Capsid-internal formation of relaxed circular (RC) DNA enables the particle to leave the cell as stable virion; yet, when infecting a new cell it must release the RC-DNA for conversion into another, plasmid-like DNA that templates new viral RNAs. This up and down in nucleic acid interactions is presumably regulated by transient phosphorylation of HBc, mainly in its arginine-rich C terminal domain (CTD) which displays strong non-sequence-specific RNA binding. However, neither the phosphorylation sites nor the relevant enzymes are well defined. We developed a recombinant system to produce kinase-specific phospho-HBc species, and adapted a feasible gel assay for their separation. By mutagenesis and mass spectrometry we identified seven target sites for a major candidate kinase, SRPK1, in the CTD. As full SRPK1 phosphorylation thwarted non-specific RNA binding the comparably high phosphorylation of HBc in human cells suggests how specific pgRNA encapsidation might be achieved. Our new tool set will facilitate disentangling the role of HBc phosphorylation in HBV infection and exploiting it as potential therapeutic target.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphate-binding tag, a new tool to visualize phosphorylated proteins.

            We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Six classes of nuclear localization signals specific to different binding grooves of importin alpha.

              The importin alpha/beta pathway mediates nuclear import of proteins containing the classical nuclear localization signals (NLSs). Although the consensus sequences of the classical NLSs have been defined, there are still many NLSs that do not match the consensus rule and many nonfunctional sequences that match the consensus. We report here six different NLS classes that specifically bind to distinct binding pockets of importin alpha. By screening of random peptide libraries using an mRNA display, we selected peptides bound by importin alpha and identified six classes of NLSs, including three novel classes. Two noncanonical classes (class 3 and class 4) specifically bound the minor binding pocket of importin alpha, whereas the classical monopartite NLSs (class 1 and class 2) bound to the major binding pocket. Using a newly developed universal green fluorescent protein expression system, we found that these NLS classes, including plant-specific class 5 NLSs and bipartite NLSs, fundamentally require the regions outside the core basic residues for their activity and have specific residues or patterns that confer the activities differently between yeast, plants, and mammals. Furthermore, amino acid replacement analyses revealed that the consensus basic patterns of the classical NLSs are not essential for activity, thereby generating more unconventional patterns, including redox-sensitive NLSs. These results explain the causes of the NLS diversity. The defined consensus patterns and properties of importin alpha-dependent NLSs provide useful information for identifying NLSs.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SupervisionRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                19 December 2018
                December 2018
                : 14
                : 12
                : e1007488
                Affiliations
                [1 ] University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
                [2 ] Biological Faculty, University of Freiburg, Freiburg, Germany
                [3 ] Institut de Biologie et Chimie des Protéines, University of Lyon1, Lyon, France
                [4 ] Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
                University of California, San Diego, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-3892-8587
                http://orcid.org/0000-0002-7962-4849
                http://orcid.org/0000-0003-2204-9158
                Article
                PPATHOGENS-D-18-01515
                10.1371/journal.ppat.1007488
                6317823
                30566530
                12e02377-d261-458e-a7ab-7fac27e6aeb5
                © 2018 Heger-Stevic et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 July 2018
                : 27 November 2018
                Page count
                Figures: 10, Tables: 0, Pages: 31
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: DFG NA154/9-4
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100006360, Bundesministerium für Wirtschaft und Energie;
                Award ID: ZF4010301CR5
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100004440, Wellcome Trust;
                Award ID: Equipment grant WT087658
                Award Recipient :
                This work was funded by the Deutsche Forschungsgemeinschaft (DFG, http://www.dfg.de) grant Na154/9-4 to MN. Some aspects were supported by Federal Ministry for Economic Affairs and Energy (BMWI, https://www.bmwi.de) grant ZIM-ZF4010301CR5 to MN. grant ZIM-ZF4010301CR5 to MN. The article processing charge was funded by the German Research Foundation (DFG) and the Albert Ludwigs University Freiburg in the funding program Open Access Publishing. Electron microscopy at the Edinburgh cryoEM facilty was supported by Wellcome Trust ( https://wellcome.ac.uk/home) equipment grant WT087658 to BB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Post-Translational Modification
                Phosphorylation
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Viral Packaging
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Proteases
                Serine Proteases
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Proteases
                Serine Proteases
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Virions
                Biology and life sciences
                Molecular biology
                Macromolecular structure analysis
                RNA structure
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA structure
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Hepatitis viruses
                Hepatitis B virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Hepatitis viruses
                Hepatitis B virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Hepatitis viruses
                Hepatitis B virus
                Biology and Life Sciences
                Biochemistry
                Proteins
                Recombinant Proteins
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Phosphatases
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Phosphatases
                Custom metadata
                vor-update-to-uncorrected-proof
                2019-01-03
                All relevant data are within the manuscript and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article