2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Effect and Mechanisms of Essential Oils in Mood Disorders: Interaction between the Nervous and Respiratory Systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Essential oils (EOs) are extracted from plants and contain active components with therapeutic effects. Evidence shows that various types of EOs have a wide range of health benefits. In our previous studies, the potential of lavender EO for prevention and even treatment of depression and anxiety symptoms was demonstrated. The favourable outcomes may be due to multiple mechanisms, including the regulation of monoamine level, the induction of neurotrophic factor expression, the regulation of the endocrine system and the promotion of neurogenesis. The molecules of EOs may reach the brain and exert an effect through two distinctive pathways, namely, the olfactory system and the respiratory system. After inhalation, the molecules of the EOs would either act directly on the olfactory mucosa or pass into the respiratory tract. These two delivery pathways suggest different underlying mechanisms of action. Different sets of responses would be triggered, such as increased neurogenesis, regulation of hormonal levels, activation of different brain regions, and alteration in blood biochemistry, which would ultimately affect both mood and emotion. In this review, we will discuss the clinical effects of EOs on mood regulation and emotional disturbances as well as the cellular and molecular mechanisms of action. Emphasis will be put on the interaction between the respiratory and central nervous system and the involved potential mechanisms. Further evidence is needed to support the use of EOs in the clinical treatment of mood disturbances. Exploration of the underlying mechanisms may provide insight into the future therapeutic use of EO components treatment of psychiatric and physical symptoms.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Intranasal delivery of biologics to the central nervous system.

          Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.

            Various chronic antidepressant treatments increase adult hippocampal neurogenesis, but the functional importance of this phenomenon remains unclear. Here, using genetic and radiological methods, we show that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants. Serotonin 1A receptor null mice were insensitive to the neurogenic and behavioral effects of fluoxetine, a serotonin selective reuptake inhibitor. X-irradiation of a restricted region of mouse brain containing the hippocampus prevented the neurogenic and behavioral effects of two classes of antidepressants. These findings suggest that the behavioral effects of chronic antidepressants may be mediated by the stimulation of neurogenesis in the hippocampus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using the rat forced swim test to assess antidepressant-like activity in rodents.

              The forced swim test (FST) is one of the most commonly used animal models for assessing antidepressant-like behavior. This protocol details using the FST in rats, which takes place over 48 h and is followed by the video analysis of the behavior. The swim test involves the scoring of active (swimming and climbing) or passive (immobility) behavior when rodents are forced to swim in a cylinder from which there is no escape. There are two versions that are used, namely the traditional and modified FSTs, which differ in their experimental setup. For both versions, a pretest of 15 min (although a number of laboratories have used a 10-min pretest with success) is included, as this accentuates the different behaviors in the 5-min swim test following drug treatment. Reduction in passive behavior is interpreted as an antidepressant-like effect of the manipulation, provided it does not increase general locomotor activity, which could provide a false positive result in the FST.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                03 May 2021
                May 2021
                : 22
                : 9
                : 4844
                Affiliations
                Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China; timothy.kh.fung@ 123456connect.polyu.hk (T.K.H.F.); benson.lau@ 123456polyu.edu.hk (B.W.M.L.); shirley.ngai@ 123456polyu.edu.hk (S.P.C.N.)
                Author notes
                [* ]Correspondence: hector.tsang@ 123456polyu.edu.hk ; Tel.: +852-2766-6750
                Author information
                https://orcid.org/0000-0002-8533-3482
                Article
                ijms-22-04844
                10.3390/ijms22094844
                8125361
                34063646
                12e36597-81bd-40ab-89bb-fa9e4e06aa1a
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 28 February 2021
                : 29 April 2021
                Categories
                Review

                Molecular biology
                inhalation therapy,essential oil,anti-depression,anxiolytic
                Molecular biology
                inhalation therapy, essential oil, anti-depression, anxiolytic

                Comments

                Comment on this article