15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Paradigms For Asteroid Formation

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asteroids and meteorites provide key evidence on the formation of planetesimals in the Solar System. Asteroids are traditionally thought to form in a bottom-up process by coagulation within a population of initially km-scale planetesimals. However, new models challenge this idea by demonstrating that asteroids of sizes from 100 to 1000 km can form directly from the gravitational collapse of small particles which have organised themselves in dense filaments and clusters in the turbulent gas. Particles concentrate passively between eddies down to the smallest scales of the turbulent gas flow and inside large-scale pressure bumps and vortices. The streaming instability causes particles to take an active role in the concentration, by piling up in dense filaments whose friction on the gas reduces the radial drift compared to that of isolated particles. In this chapter we review new paradigms for asteroid formation and compare critically against the observed properties of asteroids as well as constraints from meteorites. Chondrules of typical sizes from 0.1 to 1 mm are ubiquitous in primitive meteorites and likely represent the primary building blocks of asteroids. Chondrule-sized particles are nevertheless tightly coupled to the gas via friction and are therefore hard to concentrate in large amounts in the turbulent gas. We review recent progress on understanding the incorporation of chondrules into the asteroids, including layered accretion models where chondrules are accreted onto asteroids over millions of years. We highlight in the end ten unsolved questions in asteroid formation where we expect that progress will be made over the next decade.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Aerodynamics of solid bodies in the solar nebula

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Accretion and the Evolution of T Tauri Disks

                Bookmark

                Author and article information

                Journal
                2015-05-12
                Article
                10.2458/azu_uapress_9780816530595-ch025
                1505.02941
                12e66d9c-ab1f-4c0a-9f1b-8e9ddb36abd5

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Chapter to appear in the book ASTEROIDS IV, (University of Arizona Press) Space Science Series, edited by P. Michel, F. DeMeo and W. Bottke
                astro-ph.EP

                Planetary astrophysics
                Planetary astrophysics

                Comments

                Comment on this article