9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy.

      Journal of Molecular Biology
      Anions, Bacterial Proteins, metabolism, Calorimetry, DNA, Single-Stranded, DNA-Binding Proteins, chemistry, Escherichia coli, Poly T, Protein Binding, Salts, Sodium Chloride, Thermodynamics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isothermal titration calorimetry (ITC) was used to examine the effects of monovalent salts (NaCl, NaBr, NaF and ChCl) on the binding enthalpy (DeltaHobs) for E. coli SSB tetramer binding to the single-stranded oligodeoxythymidylates, dT(pT)69 and dT(pT)34 over a wide range of salt concentrations from 10 mM to 2.0 M (25 degrees C, pH 8.1), and when possible, the binding free energy and entropy (DeltaG degrees obs, DeltaS degrees obs). At low monovalent salt concentrations (<0.1 M), the total DeltaHobs for saturating all sites on the SSB tetramer with ssDNA shows little dependence on salt concentration, but is extremely large and exothermic (DeltaHobs=-150(+/-5) kcal/mol). This is much larger than any DeltaHobs previously reported for a protein-nucleic acid interaction. However, at salt concentrations above 0.1 M, DeltaHobs is quite sensitive to NaCl and NaBr concentration, becoming less negative with increasing salt concentration (DeltaHobs=-70(+/-1)-kcal/mol in 2 M NaBr). These salt effects on DeltaHobs were mainly a function of anion type and concentration, with the largest effects observed in NaBr, and then NaCl, with little effect of [NaF]. These large effects of salt on DeltaHobs appear to be coupled to a net release of weakly bound anions (Br- and Cl-) from the SSB protein upon DNA binding. However, at lower salt concentrations (

          Related collections

          Author and article information

          Comments

          Comment on this article