23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of mebudipine on cardiac function and activity of the myocardial nitric oxide system in ischaemia–reperfusion injury in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Previous studies have suggested that failure of the synthesis of nitric oxide is involved in the pathophysiology of myocardial ischaemia–reperfusion injury. In this study, we investigated the effect of mebudipine, a new dihydropyridine calcium channel blocker, on cardiac function and activity of the myocardial nitric oxide system in ischaemia–reperfusion injury in isolated rat hearts.

          Methods

          Forty male Wistar rats (250–300 g) were divided into four groups ( n = 10): sham, control, vehicle and drug groups. The animals were anesthetised with sodium pentobarbital (6 mg/kg intraperitoneal). The hearts were quickly removed, mounted on a Longendorff apparatus and perfused with Krebs-Henseleit solution under constant pressure at 37°C. After 20 min stabilisation period, the ischaemic groups received 30 min global ischaemia and 120 min reperfusion. For the drug and vehicle groups, before ischaemia the hearts were perfused with mebudipine (10 -3 µM) or ethanol-enriched solution (0.01%) for 25 min, respectively. Myocardial function, and creatine kinase, lactate dehydogenase and total nitric oxide metabolite (nitrite and nitrate) levels were analysed.

          Results

          Cardiac functions had recovered significantly in the mebudipine group ( p < 0.01). Furthermore, mebudipine remarkably reduced the levels of lactate dehydogenase and creatine kinase in the coronary effluent and increased myocardial nitric oxide metabolite levels compared with the control group.

          Conclusion

          Our results indicate that mebudipine reduced the intensity of myocardial ischaemia–reperfusion injury, and that activation of the myocardial nitric oxide system played an important role in this regard.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process.

            Myocardial infarction is the major cause of death in the world. Over the last two decades, coronary reperfusion therapy has become established for the management of acute myocardial infarction (AMI). However, restoration of blood flow to previously ischemic myocardium results in the so-called ischemia/reperfusion (IR)-injury. The different clinical manifestations of this injury include myocardial necrosis, arrhythmia, myocardial stunning and endothelial- and microvascular dysfunction including the no-reflow phenomenon. The pathogenesis of ischemia/reperfusion injury consists of many mechanisms. Recently, there's increasing evidence for an important role in IR-injury on hypercontracture induced by high levels of cytosolic calcium or by low concentrations of ATP. In the last years, many studies on experimental models were investigated, but the clinical trials confirming these effects remain spare. Recently, the beneficial effect of Na(+)/H(+)-exchange inhibitor cariporide and of the oxygen-derived free radical (ODFR) scavenger vitamin E on coronary bypass surgery-induced IR-injury were demonstrated. Also recently, the beneficial effect of allopurinol on the recovery of left ventricular function after rescue balloon-dilatation was demonstrated. The beneficial effect of magnesium and trimetazidine on IR-injury remains controversial. The beneficial effect of adenosine remains to be further confirmed. There's also increasing interest in agentia combining the property of upregulating NO-synthase (e.g. L-arginine) and restoring the balance between NO and free radicals (e.g. tetrahydrobiopterin). One of such agents could be folic acid. In this review article the authors give an overview of the recent insights concerning pathogenesis and therapeutic possibilities to prevent IR-induced injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ischemia-reperfusion injury: processes in pathogenetic networks: a review.

              Ischemia-reperfusion injury is a complex phenomenon involving not only intracellular injury processes but also an injurious inflammatory response. Both the intracellular injury processes and the injurious events of the inflammatory response are interconnected in pathogenetic networks. Anoxic cell injury predominates in the ischemic phase. The decreased mitochondrial ATP generation impairs cellular ion homeostasis with activation of hydrolases and loss of selective permeability of cell membranes. Upon resupply of blood, the inflammatory response is initiated. Resident cells of the affected tissue, blood-derived cells, and noncellular elements such as the complement system are activated, and signalling and other molecules are formed at altered rates. Cell injury occurring in the reperfusion phase may either be a consequence of cellular alterations that were already initiated in the ischemic phase or may result from the inflammatory response. The intracellular injurious alterations are in part the same as those involved in anoxic cell injury. In addition, activation of intracellular signalling cascades and of apoptotic pathways may take place. Except for a large decrease in their rates, no significant difference exists between the injury processes during warm and cold ischemia as they become evident during ischemia itself. In contrast, the injury processes of the inflammatory response and of cell injury in the reperfusion phase significantly vary depending on pre-existent warm versus cold ischemia. Because of the netlike characteristics of the pathomechanisms, a multifactorial approach is required to provide protection against ischemia-reperfusion injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cardiovasc J Afr
                Cardiovasc J Afr
                TBC
                Cardiovascular Journal of Africa
                Clinics Cardive Publishing
                1995-1892
                1680-0745
                November 2011
                : 22
                : 6
                : 319-323
                Affiliations
                Physiology and Neuroscience Research Centre, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
                Physiology and Neuroscience Research Centre, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
                Department of Physiology, Drug Applied Research Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
                Department of Physiology, Drug Applied Research Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
                The Young Researchers Club of Tabriz, Islamic Azad University, Tabriz, Iran
                Department of Anatomy, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
                Article
                10.5830/CVJA-2010-078
                3721931
                22159320
                12f1b1a3-f4e4-4245-a03c-43a8eb056f1c
                Copyright © 2010 Clinics Cardive Publishing

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 January 2010
                : 31 August 2010
                Categories
                Cardiovascular Topics

                ischaemia,nitric oxide,reperfusion,mebudipine,isolated heart

                Comments

                Comment on this article