17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epidemiology of the Systemic Inflammatory Response Syndrome (SIRS) in the Emergency Department

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Consensus guidelines recommend sepsis screening for adults with systemic inflammatory response syndrome (SIRS), but the epidemiology of SIRS among adult emergency department (ED) patients is poorly understood. Recent emphasis on cost-effective, outcomes-based healthcare prompts the evaluation of the performance of large-scale efforts such as sepsis screening. We studied a nationally representative sample to clarify the epidemiology of SIRS in the ED and subsequent category of illness.

          Methods: This was a retrospective analysis of ED visits by adults from 2007 to 2010 in the National Hospital Ambulatory Medical Care Survey (NHAMCS). We estimated the incidence of SIRS using initial ED vital signs and a Bayesian construct to estimate white blood cell count based on test ordering. We report estimates with Bayesian modified credible intervals (mCIs).

          Results: We used 103,701 raw patient encounters in NHAMCS to estimate 372,844,465 ED visits over the 4-year period. The moderate estimate of SIRS in the ED was 17.8% (95% mCI: 9.7 to 26%). This yields a national moderate estimate of approximately 16.6 million adult ED visits with SIRS per year. Adults with and without SIRS had similar demographic characteristics, but those with SIRS were more likely to be categorized as emergent in triage (17.7% versus 9.9%, p<0.001), stay longer in the ED (210 minutes versus 153 minutes, p<0.0001), and were more likely to be admitted (31.5% versus 12.5%, p<0.0001). Infection accounted for only 26% of SIRS patients. Traumatic causes of SIRS comprised 10% of presentations; other traditional categories of SIRS were rare.

          Conclusion: SIRS is very common in the ED. Infectious etiologies make up only a quarter of adult SIRS cases. SIRS may be more useful if modified by clinician judgment when used as a screening test in the rapid identification and assessment of patients with the potential for sepsis. [West J Emerg Med. 2014;15(3):329–336.]

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring diagnoses: ICD code accuracy.

          To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Main error sources along the "patient trajectory" include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the "paper trail" include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis.

            The Surviving Sepsis Campaign (SSC or "the Campaign") developed guidelines for management of severe sepsis and septic shock. A performance improvement initiative targeted changing clinical behavior (process improvement) via bundles based on key SSC guideline recommendations. A multifaceted intervention to facilitate compliance with selected guideline recommendations in the intensive care unit, emergency department, and wards of individual hospitals and regional hospital networks was implemented voluntarily in the United States, Europe, and South America. Elements of the guidelines were "bundled" into two sets of targets to be completed within 6 hrs and within 24 hrs. An analysis was conducted on data submitted from January 2005 through March 2008. A total of 15,022 subjects. Data from 15,022 subjects at 165 sites were analyzed to determine the compliance with bundle targets and association with hospital mortality. Compliance with the entire resuscitation bundle increased linearly from 10.9% in the first site quarter to 31.3% by the end of 2 yrs (p < .0001). Compliance with the entire management bundle started at 18.4% in the first quarter and increased to 36.1% by the end of 2 yrs (p = .008). Compliance with all bundle elements increased significantly, except for inspiratory plateau pressure, which was high at baseline. Unadjusted hospital mortality decreased from 37% to 30.8% over 2 yrs (p = .001). The adjusted odds ratio for mortality improved the longer a site was in the Campaign, resulting in an adjusted absolute drop of 0.8% per quarter and 5.4% over 2 yrs (95% confidence interval, 2.5-8.4). The Campaign was associated with sustained, continuous quality improvement in sepsis care. Although not necessarily cause and effect, a reduction in reported hospital mortality rates was associated with participation. The implications of this study may serve as an impetus for similar improvement efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study.

              Define the epidemiology of the four recently classified syndromes describing the biologic response to infection: systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic shock. Prospective cohort study with a follow-up of 28 days or until discharge if earlier. Three intensive care units and three general wards in a tertiary health care institution. Patients were included if they met at least two of the criteria for SIRS: fever or hypothermia, tachycardia, tachypnea, or abnormal white blood cell count. Development of any stage of the biologic response to infection: sepsis, severe sepsis, septic shock, end-organ dysfunction, and death. During the study period 3708 patients were admitted to the survey units, and 2527 (68%) met the criteria for SIRS. The incidence density rates for SIRS in the surgical, medical, and cardiovascular intensive care units were 857, 804, and 542 episodes per 1000 patient-days, respectively, and 671, 495, and 320 per 1000 patient-days for the medical, cardiothoracic, and general surgery wards, respectively. Among patients with SIRS, 649 (26%) developed sepsis, 467 (18%) developed severe sepsis, and 110 (4%) developed septic shock. The median interval from SIRS to sepsis was inversely correlated with the number of SIRS criteria (two, three, or all four) that the patients met. As the population of patients progressed from SIRS to septic shock, increasing proportions had adult respiratory distress syndrome, disseminated intravascular coagulation, acute renal failure, and shock. Positive blood cultures were found in 17% of patients with sepsis, in 25% with severe sepsis, and in 69% with septic shock. There were also stepwise increases in mortality rates in the hierarchy from SIRS, sepsis, severe sepsis, and septic shock: 7%, 16%, 20%, and 46%, respectively. Of interest, we also observed equal numbers of patients who appeared to have sepsis, severe sepsis, and septic shock but who had negative cultures. They had been prescribed empirical antibiotics for a median of 3 days. The cause of the systemic inflammatory response in these culture-negative populations is unknown, but they had similar morbidity and mortality rates as the respective culture-positive populations. This prospective epidemiologic study of SIRS and related conditions provides, to our knowledge, the first evidence of a clinical progression from SIRS to sepsis to severe sepsis and septic shock.
                Bookmark

                Author and article information

                Journal
                West J Emerg Med
                West J Emerg Med
                wjem
                Western Journal of Emergency Medicine
                Department of Emergency Medicine, University of California, Irvine
                1936-900X
                1936-9018
                May 2014
                19 February 2014
                : 15
                : 3
                : 329-336
                Affiliations
                [* ]University of California Los Angeles, Department of Emergency Medicine, Torrance, California
                []University of California Davis, Department of Emergency Medicine, Sacramento, California
                Author notes
                Address for Correspondence: Timothy Horeczko, MD, MSCR. Harbor-UCLA Medical Center, Department of Emergency Medicine, 1000 W. Carson St, Box 21, Torrance, CA 90509. Email: thoreczko@ 123456emedharbor.edu .
                Article
                i1936-900X-15-3-329
                10.5811/westjem.2013.9.18064
                4025532
                24868313
                12faedfe-58f9-41f4-9bee-6c621eb3c4e5
                © 2014 Department of Emergency Medicine, University of California, Irvine
                History
                : 26 April 2013
                : 24 July 2013
                : 30 September 2013
                Page count
                Pages: 8
                Categories
                CRITICAL CARE
                Original Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article