Blog
About

0
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New molecular evidence for fragmentation between two distant populations of the threatened stingless bee Melipona subnitida Ducke (Hymenoptera, Apidae, Meliponini)

      , , , , ,

      Journal of Hymenoptera Research

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For a snapshot assessment of the genetic diversity present within Melipona subnitida, an endemic stingless bee distributed in the semi-arid region of northeastern Brazil, populations separated by over 1,000 km distance were analyzed by ISSR genotyping. This is a prerequisite for the establishment of efficient management and conservation practices. From 21 ISSR primers tested, only nine revealed consistent and polymorphic bands (loci). PCR reactions resulted in 165 loci, of which 92 were polymorphic (57.5%). Both ΦST (ARLEQUIN) and θB (HICKORY) presented high values of similar magnitude (0.34, p<0.0001 and 0.33, p<0.0001, respectively), showing that these two groups were highly structured. The dendrogram obtained by the cluster analysis and the scatter-plot of the PCoA corroborate with the data presented by the AMOVA and θB tests. Clear evidence of subdivision among sampling sites was also observed by the Bayesian grouping model analysis (STRUCTURE) of the ISSR data. It is clear from this study that conservation strategies should take into account the heterogeneity of these two separate populations, and address actions towards their sustainability by integrating our findings with ecological tools.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.

          Simple sequence repeats (SSR), or microsatellites, are ubiquitous in eukaryotic genomes. Here we demonstrate the utility of microsatellite-directed DNA fingerprinting by polymerase chain reaction (PCR) amplification of the interrepeat region. No sequencing is required to design the oligonucleotide primers. We tested primers anchored at 3' or 5' termini of the (CA)n repeats, extended into the flanking sequence by 2 to 4 nucleotide residues [3'-anchored primers: (CA)8RG, (CA)8RY, and (CA)7RTCY; and 5'-anchored primers: BDB(CA)7C, DBDA(CA)7, VHVG(TG)7 and HVH(TG)7T]. Radioactively labeled amplification products were analyzed by electrophoresis, revealing information on multiple genomic loci in a single gel lane. Complex, species-specific patterns were obtained from a variety of eukaryotic taxa. Intraspecies polymorphisms were also observed and shown to segregate as Mendelian markers. Inter-SSR PCR provides a novel fingerprinting approach applicable for taxonomic and phylogenetic comparisons and as a mapping tool in a wide range of organisms. This application of (CA)n repeats may be extended to different microsatellites and other common dispersed elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of resources and risks in regulating wild bee populations.

            Recent declines of bee species have led to great interest in preserving and promoting bee populations for agricultural and wild plant pollination. Many correlational studies have examined the indirect effects of factors such as landscape context and land management practices and found great variation in bee response. We focus here on the evidence for effects of direct factors (i.e., food resources, nesting resources, and incidental risks) regulating bee populations and then interpret varied responses to indirect factors through their species-specific and habitat-specific effects on direct factors. We find strong evidence for food resource availability regulating bee populations, but little clear evidence that other direct factors are commonly limiting. We recommend manipulative experiments to illuminate the effects of these different factors. We contend that much of the variation in impact from indirect factors, such as grazing, can be explained by the relationships between indirect factors and floral resource availability based on environmental circumstances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Bayesian approach to inferring population structure from dominant markers.

              Molecular markers derived from polymerase chain reaction (PCR) amplification of genomic DNA are an important part of the toolkit of evolutionary geneticists. Random amplified polymorphic DNA markers (RAPDs), amplified fragment length polymorphisms (AFLPs) and intersimple sequence repeat (ISSR) polymorphisms allow analysis of species for which previous DNA sequence information is lacking, but dominance makes it impossible to apply standard techniques to calculate F-statistics. We describe a Bayesian method that allows direct estimates of FST from dominant markers. In contrast to existing alternatives, we do not assume previous knowledge of the degree of within-population inbreeding. In particular, we do not assume that genotypes within populations are in Hardy-Weinberg proportions. Our estimate of FST incorporates uncertainty about the magnitude of within-population inbreeding. Simulations show that samples from even a relatively small number of loci and populations produce reliable estimates of FST. Moreover, some information about the degree of within-population inbreeding (FIS) is available from data sets with a large number of loci and populations. We illustrate the method with a reanalysis of RAPD data from 14 populations of a North American orchid, Platanthera leucophaea.
                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                June 12 2014
                June 12 2014
                : 38
                : 1-9
                Article
                10.3897/jhr.38.7302
                © 2014

                http://creativecommons.org/licenses/by/4.0/

                Product

                Comments

                Comment on this article