+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PARP inhibitor re-sensitizes Adriamycin resistant leukemia cells through DNA damage and apoptosis


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Resistance to Adriamycin (ADR) is an increasing problem in the treatment of leukemia and the development of novel therapeutic strategies is becoming increasingly important. Olaparib is a poly (adenosine diphosphate-ribose) polymerase (PARP) 1 inhibitor, which has promising antitumor activity in patients with metastatic breast cancer and germline BRCA mutations. Previously published studies have indicated that Olaparib is able to overcome drug resistance in cancer; however, its underlying mechanism of action is yet to be elucidated. The aim of the present study was to explore the mechanism underlying re-sensitization. Annexin V-propidium iodide staining indicated that the percentage of apoptotic ADR resistant cells was markedly increased and the cell cycle was blocked at the G2/M-phase following treatment with ADR combined with Olaparib, when compared with the control group. The alkaline comet assay demonstrated that ADR combined with Olaparib significantly upregulated the induction of the DNA damage response in ADR-resistant cells. Western blot analysis revealed that the protein expression of γ-H2A histone family member X, cleaved PARP, caspase 3 and cleaved caspase 3 was markedly enhanced, while the cell cycle-associated protein cyclin B1 was downregulated in K562/ADR cells following treatment with a combination of ADR and Olaparib. Similar synergistic cytotoxicity was observed in blood mononuclear cells, which were isolated from patients with chemotherapy-resistant leukemia. As Olaparib is available for clinical use, the results of the present study provide a rationale for the development of Olaparib combinational therapies for cases of ADR resistant leukemia.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Caspases: the executioners of apoptosis.

          Apoptosis is a major form of cell death, characterized initially by a series of stereotypic morphological changes. In the nematode Caenorhabditis elegans, the gene ced-3 encodes a protein required for developmental cell death. Since the recognition that CED-3 has sequence identity with the mammalian cysteine protease interleukin-1 beta-converting enzyme (ICE), a family of at least 10 related cysteine proteases has been identified. These proteins are characterized by almost absolute specificity for aspartic acid in the P1 position. All the caspases (ICE-like proteases) contain a conserved QACXG (where X is R, Q or G) pentapeptide active-site motif. Capases are synthesized as inactive proenzymes comprising an N-terminal peptide (prodomain) together with one large and one small subunit. The crystal structures of both caspase-1 and caspase-3 show that the active enzyme is a heterotetramer, containing two small and two large subunits. Activation of caspases during apoptosis results in the cleavage of critical cellular substrates, including poly(ADP-ribose) polymerase and lamins, so precipitating the dramatic morphological changes of apoptosis. Apoptosis induced by CD95 (Fas/APO-1) and tumour necrosis factor activates caspase-8 (MACH/FLICE/Mch5), which contains an N-terminus with FADD (Fas-associating protein with death domain)-like death effector domains, so providing a direct link between cell death receptors and the caspases. The importance of caspase prodomains in the regulation of apoptosis is further highlighted by the recognition of adapter molecules, such as RAIDD [receptor-interacting protein (RIP)-associated ICH-1/CED-3-homologous protein with a death domain]/CRADD (caspase and RIP adapter with death domain), which binds to the prodomain of caspase-2 and recruits it to the signalling complex. Cells undergoing apoptosis following triggering of death receptors execute the death programme by activating a hierarchy of caspases, with caspase-8 and possibly caspase-10 being at or near the apex of this apoptotic cascade.
            • Record: found
            • Abstract: found
            • Article: not found

            Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.

            Deficiency in either of the breast cancer susceptibility proteins BRCA1 or BRCA2 induces profound cellular sensitivity to the inhibition of poly(ADP-ribose) polymerase (PARP) activity. We hypothesized that the critical role of BRCA1 and BRCA2 in the repair of double-strand breaks by homologous recombination (HR) was the underlying reason for this sensitivity. Here, we examine the effects of deficiency of several proteins involved in HR on sensitivity to PARP inhibition. We show that deficiency of RAD51, RAD54, DSS1, RPA1, NBS1, ATR, ATM, CHK1, CHK2, FANCD2, FANCA, or FANCC induces such sensitivity. This suggests that BRCA-deficient cells are, at least in part, sensitive to PARP inhibition because of HR deficiency. These results indicate that PARP inhibition might be a useful therapeutic strategy not only for the treatment of BRCA mutation-associated tumors but also for the treatment of a wider range of tumors bearing a variety of deficiencies in the HR pathway or displaying properties of 'BRCAness.'
              • Record: found
              • Abstract: found
              • Article: not found

              Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

              Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism.

                Author and article information

                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                January 2019
                06 November 2018
                06 November 2018
                : 19
                : 1
                : 75-84
                [1 ]Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
                [2 ]Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
                Author notes
                Correspondence to: Professor Chenjiao Yao, Department of Hematology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China, E-mail: yaochenjiao10888@ 123456163.com
                Copyright: © Wu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


                olaparib,drug resistance,leukemia,apoptosis,adriamycin
                olaparib, drug resistance, leukemia, apoptosis, adriamycin


                Comment on this article