226
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Zebrafish vasa RNA but Not Its Protein Is a Component of the Germ Plasm and Segregates Asymmetrically before Germline Specification

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Work in different organisms revealed that the vasa gene product is essential for germline specification. Here, we describe the asymmetric segregation of zebrafish vasa RNA, which distinguishes germ cell precursors from somatic cells in cleavage stage embryos. At the late blastula (sphere) stage, vasa mRNA segregation changes from asymmetric to symmetric, a process that precedes primordial germ cell proliferation and perinuclear localization of Vasa protein. Analysis of hybrid fish between Danio rerio and Danio feegradei demonstrates that zygotic vasa transcription is initiated shortly after the loss of unequal vasa mRNA segregation. Blocking DNA replication indicates that the change in vasa RNA segregation is dependent on a maternal program. Asymmetric segregation is impaired in embryos mutant for the maternal effect gene nebel. Furthermore, ultrastructural analysis of vasa RNA particles reveals that vasa RNA, but not Vasa protein, localizes to a subcellular structure that resembles nuage, a germ plasm organelle. The structure is initially associated with the actin cortex, and subsequent aggregation is inhibited by actin depolymerization. Later, the structure is found in close proximity of microtubules. We previously showed that its translocation to the distal furrows is microtubule dependent. We propose that vasa RNA but not Vasa protein is a component of the zebrafish germ plasm. Triggered by maternal signals, the pattern of germ plasm segregation changes, which results in the expression of primordial germ cell–specific genes such as vasa and, consequently, in germline fate commitment.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio.

          In a large-scale screen, we isolated mutants displaying a specific visible phenotype in embryos or early larvae of the zebrafish, Danio rerio. Males were mutagenized with ethylnitrosourea (ENU) and F2 families of single pair matings between sibling F1 fish, heterozygous for a mutagenized genome, were raised. Egg lays were obtained from several crosses between F2 siblings, resulting in scoring of 3857 mutagenized genomes. F3 progeny were scored at the second, third and sixth day of development, using a stereomicroscope. In a subsequent screen, fixed embryos were analyzed for correct retinotectal projection. A total of 4264 mutants were identified. Two thirds of the mutants displaying rather general abnormalities were eventually discarded. We kept and characterized 1163 mutants. In complementation crosses performed between mutants with similar phenotypes, 894 mutants have been assigned to 372 genes. The average allele frequency is 2.4. We identified genes involved in early development, notochord, brain, spinal cord, somites, muscles, heart, circulation, blood, skin, fin, eye, otic vesicle, jaw and branchial arches, pigment pattern, pigment formation, gut, liver, motility and touch response. Our collection contains alleles of almost all previously described zebrafish mutants. From the allele frequencies and other considerations we estimate that the 372 genes defined by the mutants probably represent more than half of all genes that could have been discovered using the criteria of our screen. Here we give an overview of the spectrum of mutant phenotypes obtained, and discuss the limits and the potentials of a genetic saturation screen in the zebrafish.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage.

            The Xenopus embryo undergoes 12 rapid synchronous cleavages followed by a period of slower asynchronous divisions more typical of somatic cells. This change in cell cleavage has been termed the midblastula transition (MBT). We show that at the MBT the blastomeres become motile and transcriptionally active for the first time. We have investigated the timing of the MBT and found that it does not depend on cell division, on time since fertilization or on a counting mechanism involving the sequential modification of DNA. Rather, the timing of the MBT depends on reaching a critical ratio of nucleus to cytoplasm. We view the MBT as a consequence of the titration of some substance, originally present in the egg, by the exponentially increasing nuclear material. When this substance is exhausted a new cell program is engaged, leading to the acquisition of several new cell properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of zygotic gene expression in Drosophila primordial germ cells.

              Activation of the zygotic genome is a prerequisite for the transition from maternal to zygotic control of development. The onset of zygotic transcription has been well studied in somatic cells, but evidence suggests that it is controlled differently in the germline. In Drosophila, zygotic transcription in the soma has been detected as early as one hour after egg laying (AEL) [1]. In the germline, general RNA synthesis is not detected until 3.5 hours AEL (stage 8) [2] and poly(A)-containing transcripts are not observed in early germ cell nuclei [3]. However, rRNA gene expression has been demonstrated at this time [4]. Therefore, either there is a general, low level activation of the genome in early germ cells, or specific classes of genes, such as those transcribed by RNA polymerase (RNAP) II, are repressed. We addressed this issue by localizing the potent transcriptional activator Gal4-VP16 to the germline, and we find that Gal4-VP16-dependent gene expression is repressed in early germ cells. In addition, localization of germ plasm to the anterior reveals that it is sufficient to repress Bicoid-dependent gene expression. Thus, even in the presence of known transcriptional activators, RNAP II dependent gene expression is actively repressed in early germ cells. Furthermore, once the germ cell genome is activated, we find that vasa is expressed specifically in germ cells. This expression does not require proper patterning of the soma, indicating that it is likely to be controlled by the germ plasm.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                15 May 2000
                : 149
                : 4
                : 875-888
                Affiliations
                [a ]Max Planck Institut für Entwicklungsbiologie Abteilung Genetik, 72076 Tübingen, Germany
                [b ]Elektronenmikroskopie Labor, 72076 Tübingen, Germany
                Article
                0001132
                10.1083/jcb.149.4.875
                2174565
                10811828
                130aaf75-aad1-469e-b3a8-094a9375c3ee
                © 2000 The Rockefeller University Press
                History
                : 31 January 2000
                : 28 March 2000
                : 3 April 2000
                Categories
                Original Article

                Cell biology
                rna localization,nebel,danio rerio,primordial germ cells,asymmetric segregation
                Cell biology
                rna localization, nebel, danio rerio, primordial germ cells, asymmetric segregation

                Comments

                Comment on this article