36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          Epigallocatechin-3-gallate (EGCG) is a major polyphenol in green tea. In this study, we investigated the effects of EGCG on insulin resistance and insulin clearance in non-alcoholic fatty liver disease (NAFLD) mice.

          Methods:

          Mice were fed on a high-fat diet for 24 weeks. During the last 4 weeks, the mice were injected with EGCG (10, 20 and 40 mg·kg −1·d −1, ip). Glucose tolerance, insulin tolerance and insulin clearance were assessed. After the mice were euthanized, blood samples and tissue specimens were collected. Glucose-stimulated insulin secretion was examined in isolated pancreatic islets. The progression of NAFLD was evaluated histologically and by measuring lipid contents. Insulin-degrading enzyme (IDE) protein expression and enzyme activity were detected using Western blot and immunocapture activity assays, respectively.

          Results:

          The high-fat diet significantly increased the body weight and induced grade 2 or 3 liver fatty degeneration (steatosis, lobular inflammation and ballooning) accompanied by severe hyperlipidemia, hyperglycemia, hyperinsulinemia and insulin resistance in the model mice. Administration of EGCG dose-dependently ameliorated the hepatic morphology and function, reduced the body weight, and alleviated hyperlipidemia, hyperglycemia, hyperinsulinemia and insulin resistance in NAFLD mice. Furthermore, EGCG dose-dependently enhanced insulin clearance and upregulated IDE protein expression and enzyme activity in the liver of NAFLD mice.

          Conclusion:

          EGCG dose-dependently improves insulin resistance in NAFLD mice not only by reducing body weight but also through enhancing the insulin clearance by hepatic IDE. The results suggest that IDE be a potential drug target for the treatment of NAFLD.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans.

          Insulin resistance plays an important role in the pathophysiology of diabetes and is associated with obesity and other cardiovascular risk factors. The "gold standard" glucose clamp and minimal model analysis are two established methods for determining insulin sensitivity in vivo, but neither is easily implemented in large studies. Thus, it is of interest to develop a simple, accurate method for assessing insulin sensitivity that is useful for clinical investigations. We performed both hyperinsulinemic isoglycemic glucose clamp and insulin-modified frequently sampled iv glucose tolerance tests on 28 nonobese, 13 obese, and 15 type 2 diabetic subjects. We obtained correlations between indexes of insulin sensitivity from glucose clamp studies (SI(Clamp)) and minimal model analysis (SI(MM)) that were comparable to previous reports (r = 0.57). We performed a sensitivity analysis on our data and discovered that physiological steady state values [i.e. fasting insulin (I(0)) and glucose (G(0))] contain critical information about insulin sensitivity. We defined a quantitative insulin sensitivity check index (QUICKI = 1/[log(I(0)) + log(G(0))]) that has substantially better correlation with SI(Clamp) (r = 0.78) than the correlation we observed between SI(MM) and SI(Clamp). Moreover, we observed a comparable overall correlation between QUICKI and SI(Clamp) in a totally independent group of 21 obese and 14 nonobese subjects from another institution. We conclude that QUICKI is an index of insulin sensitivity obtained from a fasting blood sample that may be useful for clinical research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.

            Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.

              Nonalcoholic fatty liver disease (NAFLD), hepatic insulin resistance, and type 2 diabetes are all strongly associated and are all reaching epidemic proportions. Whether there is a causal link between NAFLD and hepatic insulin resistance is controversial. This review will discuss recent studies in both humans and animal models of NAFLD that have implicated increases in hepatic diacylglycerol (DAG) content leading to activation of novel protein kinase Cϵ (PKCϵ) resulting in decreased insulin signaling in the pathogenesis of NAFLD-associated hepatic insulin resistance and type 2 diabetes. The DAG-PKCϵ hypothesis can explain the occurrence of hepatic insulin resistance observed in most cases of NAFLD associated with obesity, lipodystrophy, and type 2 diabetes. © 2013 by the American Association for the Study of Liver Diseases.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                May 2015
                20 April 2015
                : 36
                : 5
                : 597-605
                Affiliations
                [1 ]Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
                [2 ]Department of Rehabilitation, The Third Affiliated Hospital of Southern Medical University , Guangzhou 510630, China
                [3 ]Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
                Author notes
                [#]

                These authors contributed equally to this article.

                Article
                aps201511
                10.1038/aps.2015.11
                4422946
                25891086
                13175e61-2f22-4362-a597-bb612e3a46ed
                Copyright © 2015 CPS and SIMM
                History
                : 28 October 2014
                : 27 February 2015
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                epigallocatechin-3-gallate,polyphenol,green tea,non-alcoholic fatty liver disease,metabolic disorders,insulin resistance,insulin clearance,insulin-degrading enzyme

                Comments

                Comment on this article

                scite_

                Similar content299

                Cited by32

                Most referenced authors493